Cho tam giác ABC vẽ phân giác AD của góc BAC(D € BC ). VẼ DE // AB , EF // AD (E € AC)(F € C D)
So sánh ADE và DAF , So sánh ADE và CEF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ez bạn tự làm nha, mình làm sơ sơ cũng 3-4 cách rồi.:)
b) Tam giác ABC cân tại A có đường p/g góc A xuất phát từ đỉnh đồng thời là đường trung trực nên \(AD\perp BC\). và BD = CD = BC/2
Xét tam giác ABD vuông tại D (chứng minh trên), theo định lí Pythagoras:
\(AB^2=BD^2+DA^2\Leftrightarrow10^2=\frac{BC^2}{4}+DA^2\)
\(=36+DA^2\Rightarrow AD=8\) (cm) (khúc này có tính nhầm gì thì tự sửa lại nha!)
Theo đề bài ta có AB = AC = 10 < BC = 12
Hay AC < BC. Theo quan hệ giữa góc và cạnh đối diện trong tam giác ABC ta có \(\widehat{ABC}< \widehat{BAC}\) (Cái khúc này không chắc, sai thì thôi)
c) Hướng dẫn:
\(\Delta\)EDB = \(\Delta\)FDC (cạnh huyền - góc nhọn)
Suy ra EB = FC. Từ đó suy ra AE = AF.
Suy ra tam giác AEF cân tại A suy ra \(\widehat{AEF}=\frac{180^o-\widehat{A}}{2}\) (1)
Mặt khác tam giác ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra đpcm
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
b: ΔABD=ΔAED
=>góc AED=góc ABD=90 độ
c: Xét ΔAEF vuông tại A và ΔABC vuông tại B có
AE=AB
góc EAF chung
=>ΔAEF=ΔABC
=>AF=AC
d: DB=DE
mà DE<DC
nên DB<DC
a)xet tam giac abd va tam giac aed co
ab=ae
ad la canh chunggoc bad = goc ead
=>tam giác abd = ead
b)gọi i là giao điểm của ad và be
xét tam giác abi và tam giác aei có :
ab=ae
ad là cạnh chung
goc bai = góc eai
=> tam giác abi= tâm giác aei
=>ib=ie =>ad là đường trung trực của be
cho mk 3 đi mk giải tiếp cho, bài nay mk vừa mới kiểm tra
mk giải tiếp nè
theo câu a,b=>góc dbf= góc dec (kề bù do góc abd= aed)
xét tam giác bfd và ecd có
góc dbf= góc dec
bd=ed
bdf=edc
=> tam giác dbf= tam giác ecd
k cho mk đi.mk hứa mk tl hết cho mà
a) Vì AD là tia phân giác của tam giác ABC => \(\widehat{A_1}=\widehat{A_2}\)
Xét tam giác ABD và tam giác ADE có : \(\hept{\begin{cases}AE=AB\left(GT\right)\\\widehat{A_1}=\widehat{A_2}\left(cmt\right)\\Chung\end{cases}AD=>}\)Tam giác ADB=Tam giác ADE (c-g-c) (đpcm)
b) Vì tam giác ADB= tam giác ADE ( cmt phần a) => DB = DE ( cạnh tương ứng ) => D thuộc đường trung trực cuae BE (1)
Vì AB=AE(GT) => A thuộc đường trung trực của BE (2).Từ (1);(2)=> AD là đường trung trực của BE (đpcm)
c)Vì tam giác ADB=tam giác ADE ( cmt phần ) => \(\widehat{ABD=}\widehat{AED}\)(góc tương ứng) và \(\widehat{ADB}=\widehat{ADE}\)(góc tương ứng )
Vì\(\widehat{FBD}\)là góc ngoài tam giác ABD => \(\widehat{FBD}=\widehat{ABD}+\widehat{ADB}\)
Vì \(\widehat{DEC}\)là góc ngoài tam giác ADE => \(\widehat{DEC}=\widehat{ADE}+\widehat{AED}\)
\(=>\widehat{FBD}=\widehat{DEC}\)
Xét tam giác BDF và tam giác ECD có : \(\hept{\begin{cases}\widehat{FBD}=\widehat{DEC}\\BD=CE\left(cmt\right)\\\widehat{BDF}=\widehat{ECD}\end{cases}}\)=> Tam giác BDF = Tam giác ECD (đpcm)
=> \(\hept{\begin{cases}CE=BF\\\widehat{C}=\widehat{BFD}\end{cases}}\)
Vì DE = DB(cmt phần b) => Tam giác DBE cân tại D => \(\widehat{DBE}=\widehat{DEB}\)
Mà \(\widehat{FBD}=\widehat{CED}\)(cmt)=> \(\widehat{FBD}+\widehat{DBE}=\widehat{CED}+\widehat{DEB}=>\widehat{FBE}=\widehat{CEB}\)
Xét tam giác BCE và tam giác EFB có : \(\hept{\begin{cases}\widehat{BFD}=\widehat{ECD}\left(cmt\right)\\BF=CE\left(cmt\right)\\\widehat{FBE}=\widehat{CEB}\end{cases}}\)=> Tam giác BCE = Tam giác EFB (g-c-g) (đpcm)
d) Vì \(\widehat{FBD}\)là góc ngoài của tam giác ABC => \(\widehat{FBD}=\widehat{ABC}+\widehat{ACB}=>\widehat{FBD}>\widehat{ACB}\)
Mà \(\widehat{FCB}=\widehat{CED}=>\widehat{CED}>\widehat{ACB}\)=> Tam giác DEC có DC>DE
mà DE=DB( cmt phần b)=> DB <DC