Cho tam giác ABC vuông tại A có AB=4,5cm, AC=6cm , trung tuyến AM. Đường thẳng vuông góc với AC tại C cắt tia AM tại N . a) Tính độ dài cạnh BC b) Chứng minh AN=2AM c) Phân giác của góc BAC cắt BC tại D . Chứng minh D nằm giữa B và M.
Các bạn chỉ cần làm câu c thôi nhé
a: Ta có: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=4,5^2+6^2=56,25\)
=>\(BC=\sqrt{56,25}=7,5\left(cm\right)\)
b: CN\(\perp\)CA
AB\(\perp\)CA
Do đó: CN//AB
Xét ΔMCN và ΔMBA có
\(\widehat{MCN}=\widehat{MBA}\)(hai góc so le trong, CN//AB)
CM=BM
\(\widehat{CMN}=\widehat{BMA}\)(hai góc đối đỉnh)
Do đó: ΔMCN=ΔMBA
=>MN=MA
=>M là trung điểm của AN
=>AN=2AM
c: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{4,5}=\dfrac{CD}{6}\)
mà BD+CD=BC=7,5
nên \(\dfrac{BD}{4,5}=\dfrac{CD}{6}=\dfrac{BD+CD}{4,5+6}=\dfrac{7.5}{10.5}=\dfrac{5}{7}\)
=>\(BD=5\cdot\dfrac{4.5}{7}=\dfrac{22.5}{7}=\dfrac{45}{14}\left(cm\right)\)
Vì ΔABC vuông tại A có AM là đường trung tuyến
nên \(BM=CM=\dfrac{BC}{2}=3,75\left(cm\right)\)
Vì \(BD=\dfrac{45}{14}< \dfrac{52.5}{14}=BM\)
nên D nằm giữa B và M