Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=4,5^2+6^2=56,25\)
=>\(BC=\sqrt{56,25}=7,5\left(cm\right)\)
b: CN\(\perp\)CA
AB\(\perp\)CA
Do đó: CN//AB
Xét ΔMCN và ΔMBA có
\(\widehat{MCN}=\widehat{MBA}\)(hai góc so le trong, CN//AB)
CM=BM
\(\widehat{CMN}=\widehat{BMA}\)(hai góc đối đỉnh)
Do đó: ΔMCN=ΔMBA
=>MN=MA
=>M là trung điểm của AN
=>AN=2AM
c: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{4,5}=\dfrac{CD}{6}\)
mà BD+CD=BC=7,5
nên \(\dfrac{BD}{4,5}=\dfrac{CD}{6}=\dfrac{BD+CD}{4,5+6}=\dfrac{7.5}{10.5}=\dfrac{5}{7}\)
=>\(BD=5\cdot\dfrac{4.5}{7}=\dfrac{22.5}{7}=\dfrac{45}{14}\left(cm\right)\)
Vì ΔABC vuông tại A có AM là đường trung tuyến
nên \(BM=CM=\dfrac{BC}{2}=3,75\left(cm\right)\)
Vì \(BD=\dfrac{45}{14}< \dfrac{52.5}{14}=BM\)
nên D nằm giữa B và M
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK
cho tam giác ABC vuông tại A,AB=4,5 cm;AC=6cm,trung tuyến AM.Đường thẳng vuông góc với AC tại C cắt tia AM tại Na,Tính BCb,C/m AN=2AMc,Phân giác của góc BAC cắt BC tại D.C/m D nằm giữa B và M
cho tam giác ABC vuông tại A,AB=4,5 cm;AC=6cm,trung tuyến AM.Đường thẳng vuông góc với AC tại C cắt tia AM tại Na,Tính BCb,C/m AN=2AMc,Phân giác của góc BAC cắt BC tại D.C/m D nằm giữa B và M
Ay ra mk mới học lớp 6 thui
Bạn tự vẽ hình nha, mk ko biết cách up hình lên dc
a) Áp dụng đ lí Pitago vào tg vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow\) \(BC^2=4,5^2+6^2\)
\(\Rightarrow BC^2=56,25\)
\(\Rightarrow BC=7,5\)
Vậy BC = 7,5 (cm)