tìm 1 số có 4 chữ số vừa là số chính phương vừa là lập phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là A
Đặt A = a2 = b3
Ta có: 1000 \(\le\) A \(\le\) 9999
\(\Rightarrow\) 10 \(\le\) b \(\le\) 21
Mà a2 = b3 = b2 . b
\(\Rightarrow\)b là số chính phương
\(\Rightarrow\)b = 16
\(\Rightarrow\)A = 4096
Vậy số cần tìm là: 4096
Gọi số cần tìm là A
Đặt A=a2=b3A=a2=b3;
Ta có 1000 ≤ A≤ 9999 => 10≤ b ≤ 21
Mà a2=b3=b2.ba2=b3=b2.b=> b là số chính phương => b=16 => A= 4096
Tìm số có 4 chữ số vừa là số chính phương vừa là số lập phương
Số bạn nói đến là số 4096:
- Lập phương của số 16 vì 163=4096
- Bình phương của số 64 vì 642=4096
Số bạn nói đến là số 4096:
- Lập phương của số 16 vì 163=4096
- Bình phương của số 64 vì 642=4096
Gọi số chính phương đó là abcd
Vì abcd vừa là số chính phương, vừa là số lập phương nên:
Đặt abcd = x2 = y3 ( với \(x,y\in N\))
Vì x2 = y3 nên y cũng là 1 số chính phương
Ta có:
\(1000\le abcd\le9999\)
\(\Rightarrow10\le y\le21\) và y là số chính phương
=> y = 16
=> abcd = 4096
Gọi số chính phương đó là abcd.
Vì abcd vừa là số chính phương vừa là một lập phương nên đặt abcd = x² = y³ với x, y ∈ N
Vì y³ = x² nên y cũng là một số chính phương .
Ta có 1000 ≤ abcd(-) ≤ 9999 => 10 ≤ y ≤ 21 và y chính phương
=> y = 16 => abcd(-) = 4096
Vậy số cần tìm là 4096.
cho mik nhé
Gọi số chính phương đó là abcd(-) (abcd gạch đầu :D).
Vì abcd(-) vừa là số chính phương vừa là một lập phương nên đặt abcd(-) = x² = y³ với x, y ∈ N
Vì y³ = x² nên y cũng là một số chính phương .
Ta có 1000 ≤ abcd(-) ≤ 9999 => 10 ≤ y ≤ 21 và y chính phương => y = 16 => abcd(-) = 4096
Vậy số cần tìm là 4096.
Gọi số cần tìm là A
A = a^2=b^3
Ta co : 1000 \(\le\) A \(\le\) 9999
10 \(\le\) b \(\le\) 21
LAi co :
a^2=b^3=b^2.b=> b la so chinh phuong => b=16(vi 4^2=16)=> A = 4096
Gọi số chính phương đó là abcd.
Vì abcd vừa là số chính phương vừa là một lập phương nên đặt abcd = x² = y³ với x, y ∈ N
Vì y³ = x² nên y cũng là một số chính phương .
Ta có 1000 ≤ abcd(-) ≤ 9999 => 10 ≤ y ≤ 21 và y chính phương
=> y = 16 => abcd(-) = 4096
Vậy số cần tìm là 4096.
chuẩn 100%
:3
Gọi số cần tìm là A
Đặt A=a2=b3A=a2=b3;
Ta có 1000 ≤ A≤ 9999 => 10≤ b ≤ 21
Mà a2=b3=b2.ba2=b3=b2.b=> b là số chính phương => b=16 => A= 4096
gọi số cần tìm là:a
dặt a=a2=ba3=a2=b3
Ta có 100<a<9999 => 10<b<21
mà a2=b3=b2.ba2=b3=b2,b=> số phương trình => b=16,a=4096