So Sánh
S=\(\frac{1}{2}\)+\(\frac{2}{2^2}\)+\(\frac{3}{2^3}\)+...+\(\frac{2013}{2^{2013}}\)với 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2S=1+\frac{2}{2}+\frac{3}{2^2}+........+\frac{2013}{2^{2012}}\)
\(2S-S=1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{2012}}-\frac{2013}{2^{2013}}\)
\(S=1+\frac{1}{2}+.......+\frac{1}{2^{2012}}-\frac{2013}{2^{2013}}\)
\(S< 1+\frac{1}{2}+......+\frac{1}{2^{2012}}\)
\(2S< 2+1+.......+\frac{1}{2^{2011}}\)
\(2S-S< 2-\frac{1}{2^{2012}}\)
\(\Rightarrow S< 2-\frac{1}{2^{2012}}< 2\)
\(\Rightarrowđpcm\)
\(S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)
Xét mẫu:
\(\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}\)
= \(\left(1+\frac{2013}{2}\right)+\left(1+\frac{2012}{3}\right)+...+\left(1+\frac{1}{2014}\right)+1\)
= \(\frac{2014}{2}+\frac{2014}{3}+....+\frac{2014}{2013}+\frac{2014}{2014}\)
= \(2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}\)
\(\Rightarrow S=\frac{1}{2014}\)