K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ OH\(\perp\)CD tại H

Ta có: AM\(\perp\)CD

BN\(\perp\)CD

OH\(\perp\)CD 

Do đó: AM//BN//OH

Xét hình thang ABNM có

O là trung điểm của AB

OH//AM//BN

Do đó: H là trung điểm của MN

=>HM=HN

Ta có: ΔOCD cân tại O

mà OH là đường cao

nên H là trung điểm của CD

=>HC=HD

Ta có: HD+DM=HM

HC+CN=HN

mà HM=HN và HC=HD

nên DM=CN

=>DM+DC=CN+CD

=>CM=DN

=>CM/DN=1

=>Chọn D

2:

a: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

=>BMNC là hình thang

mà góc B=góc C

nên BMNC là hình thang cân

b: Để BM=MN=NC thì MN=MB

=>góc MNB=góc MBN

=>góc ABN=góc CBN

=>BN là phân giác của góc ABC

=>N là chân đường phân giác kẻ từ B xuống AC

NM=NC

=>góc NMC=góc NCM

=>góc ACM=góc BCM

=>CM là phân giác của góc ACB

=>M là chân đường phân giác kẻ từ C xuống AB

3: TH1: AD//BC

Xét tứ giác ABCD có

AD//BC

AD=BC

=>ABCD là hình bình hành

=>góc C+góc D=180 độ

mà góc C=góc D

nên góc C=180/2=90 độ

=>ABCD là hình chữ nhật

=>ABCD là hình thang cân

TH2: AD ko song song với BC

Gọi O là giao của AD và BC

Xét ΔODC có góc C=góc D

nên ΔODC cân tại O

=>OD=OC

=>OA=OB

Xét ΔODC có OA/OD=OB/OC

nên AB//CD

=>ABCD là hình thang

mà góc C=góc D

nên ABCD là hình thang cân

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0

a: góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

Tâm O là trung điểm của AH

bán kính là AH/2=R

b:

ΔABC vuông tại A có AH là đường cao

nên HA^2=HB*HC

=>HA/HC=HB/HA

HO/HN=HA/HC=HB/HA

Xét ΔBHO vuông tại H và ΔAHN vuông tại H có

HB/HA=HO/HN

=>ΔBHO đồng dạng với ΔAHN

6 tháng 7 2016

Tứ giác ANBM nội tiếp ( do 2 góc đối nhau = 90 độ)

=>gócMAN+gócMBN=180 =>gócMBN+gócMAB+gócBAB=180(1) ; và gócBMP=gócBAN=gócBDP

=>Tứ giác MBPD nội tiếp =>MBD=MPD (4)

Mặt khác gócPND+gócNPD+gócNDP=180(2)

góc PDN=góc BAN (3)

Từ (1);2;3; 4=>góc PND=gócMNB

nằm vị trí đối đỉnh

=> M,N,P thẳng hàng

5 tháng 7 2016

Vẽ hình đi

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.a. tứ giác ACOD là hình jb. tam giác BCD là tam giác jc. tính chu vi và diện tích tam giác BCD3. tam giác ABC nhọn nội tiếp...
Đọc tiếp

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với

0