1. Chứng minh rằng:
a/ abcdeg : 23, 29. Biết abc = 2. deg
b/ Cho abc : 27 CMR bca : 27
c/ abcd : 29 <=> a + 3b + 9c =27d : 29
d/ abc : 21<=>a - 2b + 4c : 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(abcdeg=1000abc+deg\)
\(=1001abc-abc+deg\)
\(=1001abc-\left(abc-deg\right)\)
\(=abc\cdot13\cdot77-\left(abc-deg\right)\)
Vì abc . 13 . 77 chia hết cho 13 ; abc - deg chia hết cho 13
=> abcdeg chia hết cho 13 ( đpcm )
b) Ta có : \(abc\) chia hết cho 29\(=>\left(1000a+100b+10c+d\right)\) chia hết cho 29
\(=>2000a+200b+20c+2d\) chia hết cho 29
\(=>\left(2001a+203b+29c+29d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29
\(=>\left(29\cdot69a+29\cdot7b+29c+29d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29
\(=>29\cdot\left(69a+7b+c+d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29
Vì \(29\cdot\left(69a+7b+c+d\right)\) chia hết cho 29 và \(29.\left(69a+7b+c+d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29
\(=>a+3b+9c+27d\) chia hết cho 29
a) abcabc=abc . 1001=abc . 7 . 11 .13 chia hết cho 7,11,13
Vậy abcabc chia hết cho 7,11;13 (đpcm)
b) abcdeg=abc.1000+deg=2.deg.1000+deg=deg.2000+deg=deg.(2000+1)=deg.2001=deg.3.23.29 chia hết cho 23,29
Vậy abcdeg chia hết cho 23 và 29 với abc=2.deg (đpcm)