K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔECD vuông tại C

=>\(CD^2+CE^2=ED^2\)

=>\(ED^2=5^2+12^2=169\)

=>\(ED=\sqrt{169}=13\left(cm\right)\)

Chu vi tam giác ECD là:

13+12+5=13+17=30(cm)

b: Xét ΔDCF vuông tại C và ΔDHF vuông tại H có

DF chung

\(\widehat{CDF}=\widehat{HDF}\)

Do đó: ΔDCF=ΔDHF

c: Ta có: ΔDCF=ΔDHF

=>FH=FC

mà FH<FE(ΔFHE vuông tại H)

nên FC<FE

19 tháng 3 2022

Lỗi ảnh

20 tháng 3 2022

Áp dụng Đ. L. py-ta-go vào tg CDE vuông tại C, có: 

DE2=CD2+CE2

=>DE2=52+122

           =25+144

           =169.

=>DE=13cm.

Chu vi tg CDE là: 

13+5+12=30(cm)

b, Xét tg DCF và tg DHF, có:

góc CDF= góc FDH(tia phân giác)

DF chung

góc C= góc DHF(=90o)

=>tg DCF= tg DHF(ch-gn)

c, Mik chx làm đc:<

13 tháng 5 2021

a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

         BD là cạnh chung

         Góc ABD = góc EBD (đường phân giác BD)

=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

a: \(CB=\sqrt{9^2+12^2}=15\left(cm\right)\)

ADlà phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=15/7

=>BD=45/7cm; CD=60/7cm

b: Xét ΔABH vuông tại H và ΔCDE vuông tại E có

góc HAB=góc ECD

=>ΔABH đồng dạng với ΔCDE

2 tháng 4 2020

,mljijijijijiji,mytf fvjtu757