Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Đ. L. py-ta-go vào tg CDE vuông tại C, có:
DE2=CD2+CE2
=>DE2=52+122
=25+144
=169.
=>DE=13cm.
Chu vi tg CDE là:
13+5+12=30(cm)
b, Xét tg DCF và tg DHF, có:
góc CDF= góc FDH(tia phân giác)
DF chung
góc C= góc DHF(=90o)
=>tg DCF= tg DHF(ch-gn)
c, Mik chx làm đc:<
a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
BD là cạnh chung
Góc ABD = góc EBD (đường phân giác BD)
=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
a) Xét Tàm giác vuông OBK và Tam giác vuông OAH có :
OA = OB (GT)
<O chung
=> Tam giác vuông OBK = Tam giác vuông OAH ( cạnh góc vuông - góc nhọn kề )
=> OH = OK (2CTU)
Xét Tam giác OHK có :
OH = OK
=> Tam giác OHK cân tại O (dpcm)
b) Vì Tam giác OBK và Tam giác OAH (cmt)
=> <OKB = <OHA (2GTU)
TC : OH = OK (cmt)
OA = OB (GT)
mà OH = OB + BH
OK = OA + AK
=> AK = BH
Xét Tam giác vuông AIK và Tam giác vuông BIH
AK = BH
<OKB = <OHA
=> Tam giác vuông AIK = Tam giác vuông BIH ( cạnh góc vuông - góc nhọn kề)
=> AI = BI (2CTU)
Xét Tam giác OAI = Tam giác OBI có :
OA = OB (GT)
OI chung
AI = BI (cmt)
=> Tam giác OAI = Tam giác OBI (c.c.c)
=> <AOI = <BOI (2GTU)
=> OI là tia phân giác của <xOy (dpcm)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a: Ta có: ΔECD vuông tại C
=>\(CD^2+CE^2=ED^2\)
=>\(ED^2=5^2+12^2=169\)
=>\(ED=\sqrt{169}=13\left(cm\right)\)
Chu vi tam giác ECD là:
13+12+5=13+17=30(cm)
b: Xét ΔDCF vuông tại C và ΔDHF vuông tại H có
DF chung
\(\widehat{CDF}=\widehat{HDF}\)
Do đó: ΔDCF=ΔDHF
c: Ta có: ΔDCF=ΔDHF
=>FH=FC
mà FH<FE(ΔFHE vuông tại H)
nên FC<FE