K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

a) \(A=x^2+2x+3=x^2+2x+1+2\)

\(=\left(x+1\right)^2+2\ge2\)

Vậy A luôn dương với mọi x

b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+2^2\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Vậy B luôn âm với mọi x

20 tháng 7 2016

a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)

Vậy x2 +2x+3 luôn dương.

b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)

Vậy -x2 +4x-5 luôn luôn âm.

30 tháng 5 2021

`A=x(x-6)+10=x^2-6x+10`

`=x^2 -2.x .3 + 3^2 + 1`

`=(x-3)^2+1 >0 forall x`

`B=x^2-2x+9y^2-6y+3`

`=(x^2-2x+1)+(9y^2-6y+1)+1`

`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.

 

a: \(A=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

b: \(B=-x^2+4x-17\)

\(=-\left(x^2-4x+17\right)\)

\(=-\left(x^2-4x+4+13\right)\)

\(=-\left(x-2\right)^2-13< 0\forall x\)

24 tháng 9 2021

a) \(A=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

b) \(4x-17-x^2=-\left(x^2-4x+4\right)-13=-\left(x-2\right)^2-13\le-13< 0\)

2 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

2 tháng 8 2019

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

13 tháng 7 2015

a) x2-6x+10

=x2-6x+9+1

=(x-3)2+1 \(\ge\) 0 (vì (x-3)2\(\ge\)0)

vậy  x^2-6x+10 luôn luôn dương với mọi x

4x-x2-5

=-x2+4x-4-1

=-(x2-4x+4)-1

=-(x-2)2-1\(\le\)-1 ( vì -(x-2)2\(\le\)0 )

vậy 4x-x^2-5 luôn luôn âm với mọi x

22 tháng 9 2016

A=x^2+x+1 luon luon dương với mọi x

17 tháng 7 2018

a)x^2+2x+3

=x^2+2.x.1+1^2+2

=(x+1)^2+2

         Vì (x+1)^2≥0

   Suy ra:(x+1)^2+2(đpcm)

b)-x^2+4x-5

=-(x^2-4x+5)

=-(x^2-2.2x+4)-1

=-(x-2)^2-1

             Vì -(x-2)^2≤0

     Suy ra -(x-2)^2-1≤-1(đpcm)

21 tháng 7 2016

a, Ta có: A=x2+2x+3 =x2+2x+1+2

                  = (x+1)2+2>0

b, B= -(x2-4x+5) = -(x2-4x+4)-1

       = -(x-2)2-1<0

Chúc bạn học tốt!

21 tháng 7 2016

a)x2+2x+3

=x2+2.x.1+12+2

=(x+1)2+2

         Vì (x+1)2\(\ge0\)

   Suy ra:(x+1)2+2\(\ge2\)(đpcm)

b)-x2+4x-5

=-(x2-4x+5)

=-(x2-2.2x+4)-1

=-(x-2)2-1

             Vì -(x-2)2\(\le0\)

     Suy ra -(x-2)2-1\(\le-1\)(đpcm)

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)