tìm giá trị của x,y,z thõa mãn các điều kiện:x+y+z=6 và x^2+y^2+z^2=12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bất đẳng thức 3 biến đối xứng thì ta có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Dấu "=" xảy ra khi: x = y = z
Mà ta thấy: \(\frac{\left(x+y+z\right)^2}{3}=x^2+y^2+z^2=12\)
\(\Rightarrow x=y=z=2\)
Vậy x = y = z = 2
Vì x+y+z=6 và \(x^2+y^2+z^2=12\)
Ta có \(x^2+y^2+z^2-x+y+z=12-6\)
Rút gọn: \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)=6\)
=> \(x+y+z=x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\)
Tìm x \(\Rightarrow x\left(x-1\right)=x\Rightarrow x-1=1\Rightarrow x=2\)
Tìm y \(\Rightarrow y\left(y-1\right)=y\Rightarrow y-1=1\Rightarrow y=2\)
Tìm z \(\Rightarrow z\left(z-1\right)=z\Rightarrow z-1=1\Rightarrow z=2\)
Vậy \(x=y=z=2\)
\(\hept{\begin{cases}x^2+y^2+z^2=12\\x+y+z=6\end{cases}}\)
Ta có \(\left(x+y+z\right)^2=36\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=36\)
\(\Leftrightarrow12+2xy+2yz+2xz=36\)
\(\Leftrightarrow2xy+2yz+2xz=24\Leftrightarrow xy+yz+xz=12\)
\(\Rightarrow x^2+y^2+z^2=xy+yz+xz=12\)
Mặt khác ta có \(x^2+y^2+z^2\ge xy+yz+xz\)
Dấu \(=\)xảy ra khi \(x=y=z\)
Vậy \(x=y=z=2\)
https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/
bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo
\(x^2+y^2+z^2=12\)
\(\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+yz+zx\right)=12\)
\(\Leftrightarrow36-2\left(xy+yz+zx\right)=12\)
\(\Leftrightarrow xy+yz+zx=12\)
\(\Rightarrow x^2+y^2+z^2=xy+yz+zx\left(=12\right)\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Mỗi hạng tử bên VT đều > 0 nên dấu "=" khi x = y = z
mà x + y + z = 6 => x = y = z = 2
Dự đoán dấu bằng: \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
\(gt\Leftrightarrow5x^2+2yz.x+4y^2+3z^2-60\text{ (1)}\)
(1) là một pt bậc hai ẩn x
\(\Delta'=y^2z^2-5\left(4y^2+3z^2-60\right)=\left(15-y^2\right)\left(20-z^2\right)\)
Ta có: x, y, z > 0 nên từ giả thiết suy ra:
\(\hept{\begin{cases}60>4y^2\\60>3z^2\\4y^2+3z^2-60< 0\end{cases}}\)
nên (1) có: \(\hept{\begin{cases}\Delta'>0\\a.c=5\left(4y^2+3z^2-60\right)< 0\end{cases}}\)
Suy ra (1) có 2 nghiệm trái dấu. Do x > 0 nên ta chọn nghiệm dương, hay
\(x=\frac{-yz+\sqrt{15-y^2}.\sqrt{20-z^2}}{5}\)
Áp dụng bđt Côsi: \(x\le\frac{-yz+\frac{15-y^2+20-z^2}{2}}{5}=\frac{35-\left(y^2+z^2+2yz\right)}{10}=\frac{35}{10}-\frac{\left(y+z\right)^2}{10}\)
\(B=x+y+z\le-\frac{\left(y+z\right)^2}{10}+\left(y+z\right)+\frac{35}{10}\)
\(B\le-\frac{1}{10}\left[\left(y+z\right)^2-10\left(y+z\right)+5^2\right]+\frac{25}{10}+\frac{35}{10}\)
\(=-\frac{1}{10}\left(y+z-5\right)^2+6\le6\)
Với \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)thì giả thiết đúng và B = 6.
Vậy Max B = 6.