K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

Ta có:\(\frac{x}{3}=\frac{y}{7}=\frac{3x}{9}=\frac{2y}{14}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{3x}{9}=\frac{2y}{14}=\frac{3x-2y}{9-14}=\frac{20}{-5}=-4\)

\(\Rightarrow\hept{\begin{cases}x=-12\\y=-28\end{cases}}\)

17 tháng 7 2016

Ta có : \(\frac{x}{3}=\frac{y}{7}\)

Áp dụng dãy tỉ số bằng nhau :

 \(\frac{x}{3}=\frac{y}{7}=\frac{3x-2y}{3.3-2.7}=\frac{20}{-5}=-4\)

\(\Rightarrow x=-4.3=-12\)

\(\Rightarrow y=-4.7=-28\)

Vậy x = -12 và y = -28

Ko cần chỉnh 😁

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

16 tháng 10 2020

a) Ta có : \(\frac{x}{y}=\frac{4}{9}\Rightarrow\frac{x}{4}=\frac{y}{9}\Rightarrow\frac{3x}{12}=\frac{2y}{18}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3x}{12}=\frac{2y}{18}=\frac{3x-2y}{12-18}=\frac{12}{-6}=-2\)

=> \(\hept{\begin{cases}x=\left(-2\right)\cdot4=-8\\y=\left(-2\right)\cdot9=-18\end{cases}}\)

b) Ta có : \(\frac{y}{4}=\frac{x}{-3}\Rightarrow\frac{x}{-3}=\frac{y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-3}=\frac{y}{4}=\frac{x-y}{\left(-3\right)-4}=\frac{7}{-7}=-1\)

=> \(\hept{\begin{cases}x=\left(-1\right)\cdot\left(-3\right)=3\\y=\left(-1\right)\cdot4=-4\end{cases}}\)

c) Ta có : \(x=-2y\Rightarrow\frac{x}{-2}=\frac{y}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-2}=\frac{y}{1}=\frac{x-y}{-2-1}=\frac{-3}{-3}=1\)

=> \(\hept{\begin{cases}x=1\cdot\left(-2\right)=-2\\y=1\end{cases}}\)

d) Ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}=\frac{2x+y-z}{4+5-7}=\frac{2}{2}=1\)

=> \(\hept{\begin{cases}x=1\cdot2=2\\y=1\cdot5=5\\z=1\cdot7=7\end{cases}}\)

( x - 7 ) ( 2y + 3 ) = 32 

<=> ( 2x - 14 ) y + 3x - 21 = 32

<=> ( 2x - 14) y + 3x - 32 - 21 = 0 

<=> ( 2x - 14 ) y + 3x - 53 = 0 

<=> ( 2x - 7) = 0 

<=> 2x=2.7 

<=> x = 7 

<=> 2y + 3 = 0 

<=> 2y = -3 

<=> y = -1,5 

19 tháng 2 2018

Có \(2xy+3x-2y=20\)

\(\Rightarrow\left(2xy-2y\right)+3x=20\)

\(\Rightarrow2y\left(x-1\right)+3x=20\)

\(\Rightarrow2y\left(x-1\right)+3x-3=20-3\)

\(\Rightarrow2y\left(x-1\right)+3\left(x-1\right)=17\)

\(\Rightarrow\left(2y+3\right)\left(x-1\right)=17\)

\(\Rightarrow\hept{\begin{cases}2y+3\inƯ\left(17\right)\\x-1\inƯ\left(17\right)\end{cases}}\)

Ta có bảng giá trị sau:

2y+3117-17-1
x-1171-1-17
x1820-16
y-17-10-2

Vậy các cặp (x;y) thỏa mãn là (18;-1),(2;7),(0;-10);(-16;-2)

15 tháng 5 2023

giải

3x=2y => y/3=x/2

Có: x+y=20

Áp dụng tính chất dãy tỉ số bằng nhau

x/2=y/3=> x+y/2+3= 20/5= 4

Ta có

x= 2 x 4= 8

y= 3 x 4= 12

Tự kết luận:vv

 

 

15 tháng 5 2023

x=12

y=8

12 tháng 10 2015

khó + lười + nhiều = không làm

16 tháng 5 2019

Hello