Chứng minh rằng 1x3x5x7x...x99 512 x522 x532 x...x1002
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2 + 4 + 6 +...+ 2x = 210
=> 2(1 + 2 + 3 +...+ x) = 210
=> \(\frac{2x\left(x+1\right)}{2}=210\)
=> x(x + 1) = 210
=> x(x + 1) = 14.15
=> x = 14
b, Ta có: \(B=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}....\frac{100}{2}=\frac{51.52.53....100}{2^{50}}\)
\(=\frac{\left(51.52.53....100\right)\left(1.2.3.....50\right)}{2^{50}\left(1.2.3.....50\right)}\)
\(=\frac{1.2.3.....100}{\left(2.1\right)\left(2.2\right)\left(2.3\right)....\left(2.50\right)}\)
\(=\frac{\left(1.3.5....99\right)\left(2.4.6....100\right)}{2.4.6.....100}\)
\(=1.3.5.....99=B\)
Vậy A = B
A = 1\(\times\)3\(\times\)7\(\times\)...\(\times\)99
Vì A là tích các số lẻ với 5 nên tận cùng của A là 5
Vậy tích A có tận cùng là 0 chữ số 0
là sao hả bạn.chưa có kết quả mà