Cho: x+y+z-=0.
Chứng minh: x^3+y^3+z^3=3xyz
Các bạn cố giúp mình nhé, mình cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo [Toán 12] Chứng minh bất đẳng thức: $x^3+y^3+z^3 \ge x+y+z$
lỗi link ấy =)) bạn vào thống kê hỏi đáp của mình để xem link nhé
ADTCDTSBN:
có: \(\frac{x-1}{2}=\frac{y}{3}=\frac{z+2}{6}=\frac{x-1+y-z-2}{2+3-6}=\frac{-5-3}{-1}=8\)
=> \(\frac{x-1}{2}=8\Rightarrow x-1=16\Rightarrow x=17\)
=>...
bn tự làm tiếp nha
ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{c+a+b}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)(*)
Lại có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{c+a+b}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=2\)(**)
Từ (*);(**) \(\Rightarrow1< A< 2\Rightarrow A\notin Z\)
Do 12/-6=x/5 nên 12.5/-6.x=>x =12.5/-6 => x=-10. Vậy x = -10
Do 12/-6=-y/3 nên 12.3=-6.-y=>-y=12.3/-6=>-y=-6=>y=6. Vậy y=6
Do 12/-6=z/-17 nên 12.-17=-6.z=>z=12.-17/-6=>z=34. Vậy z=34
Do 12/-6=-t/-9 nên 12. -9=-6. t=>t=12.-9/-6+>t=18. Vậy t=18
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Do \(x+y+z=0\) \(\Rightarrow x+y=-z\)
Ta có: \(\left(x^3+y^3\right)+z^3=\left(x+y\right)^3+z^3-3xy\left(x+y\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(-z\right)=3xyz\)(do \(x+y+z=0\)).
ta có:
(x+y+z)3=0
x^3+y^3+z^3+3(x+y)(y+z)(z+x)=0 (1)
mà x+y+z=0 suy ra x+y= -z; y+z= -x; z+x= -y (2)
từ (1) và (2) suy ra
x^3+y^3+z^3+3(-z)(-x)(-y)=0
x^3+y^3+z^3-3xyz=0
x^3+y^3+z^3=3xyz(đpcm)