K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2015

1/2D=1/2(1/6+1/10+......+1/45)

1/2D=1/12+1/20+1/30+.....+1/90

1/2D=1/3.4+1/4.5+1/5.6+......+1/9.10

1/2D=1/3-1/4+1/4-1/5+1/5-1/6+....+1/9-1/10

1/2D=1/3-1/10

1/2D=7/30

D=7/30:1/2

D=7/15

2 tháng 5 2015

Ta có:\(D=\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)

\(=\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}\)

\(=2.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)

\(=2.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(=2.\left(\frac{1}{3}-\frac{1}{10}\right)=2.\frac{7}{30}=\frac{7}{15}\)

Vậy \(D=\frac{7}{15}\)

22 tháng 11 2017

giup minh voi cac ban

5 tháng 6 2020

\(\frac{F}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{380}\)

\(\frac{F}{2}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)

\(\frac{F}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.5}+\frac{5-4}{4.5}+...+\frac{20-19}{19.20}\)

\(\frac{F}{2}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)

\(\frac{F}{2}=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\Rightarrow F=\frac{18}{20}=\frac{9}{10}\)

13 tháng 4 2016

\(\frac{\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}{\frac{7}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)=\(\frac{1}{\frac{7}{2}}\)=\(\frac{2}{7}\)

29 tháng 7 2017

\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

29 tháng 7 2017

\(=\frac{99}{100}\)

8 tháng 8 2019

\(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}.\)

\(=\frac{\frac{2+\sqrt{3}}{2}}{1+\sqrt{\frac{2+\sqrt{3}}{2}}}\)\(+\frac{\frac{2-\sqrt{3}}{2}}{1-\sqrt{\frac{2-\sqrt{3}}{2}}}\)

\(=\frac{\frac{4+2\sqrt{3}}{4}}{1+\sqrt{\frac{4+\sqrt{3}}{4}}}\)\(+\frac{\frac{4-2\sqrt{3}}{4}}{1-\sqrt{\frac{4-2\sqrt{3}}{4}}}\)

\(=\frac{\frac{3+2\sqrt{3}+1}{4}}{1+\sqrt{\frac{3+2\sqrt{3}+1}{4}}}\)\(+\frac{\frac{3-2\sqrt{3}+1}{4}}{1-\sqrt{\frac{3-2\sqrt{3}+1}{4}}}\)

\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{1+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{1+\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}}\)

\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{1+\frac{\sqrt{3}+1}{2}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{1-\frac{\sqrt{3}-1}{2}}\)

\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{\frac{2+\sqrt{3}}{2}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{\frac{2-\sqrt{3}}{2}}\)

\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{\frac{\left(\sqrt{3}+1\right)^2}{4}}\)\(+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{\frac{\left(\sqrt{3}-1\right)^2}{4}}\)

\(=1+1=2\)

8 tháng 8 2019

\(A=\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}\)

\(A=\frac{2\left(1+\frac{\sqrt{3}}{2}\right)}{2+\sqrt{4+2\sqrt{3}}}+\frac{2\left(1-\frac{\sqrt{3}}{2}\right)}{2-\sqrt{4-2\sqrt{3}}}\)

\(A=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-\sqrt{3}+1}\)

\(A=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)

\(A=\frac{\left(3-\sqrt{3}\right)\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}\)

\(A=\frac{3+\sqrt{3}+3-\sqrt{3}}{6}\)

\(A=\frac{6}{6}=1\)