Giúp m bài này với. Cảm ơn nhiều!
Cho y>x>0 và (x2 + y2)/ xy = 10/3. TÍnh M= (x-y)/(x+y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x<y
<=> x.x<x.y
<=> x\(^2\)<xy
x<y
<=> x.y<y.y
<=>xy<y\(^2\)
b) áp dụng kết quả từ câu a và tính chất bắc cầu, ta có:
x\(^2\)<xy<y\(^2\)
<=> x\(^2\)<y\(^2\)
x\(^2\)<y\(^2\)
=> x\(^2\).y<y\(^2\).y
<=> x\(^2\)y<y\(^3\)(1)
x\(^2\)<y\(^2\)
=> x\(^2\).x<y\(^2\).x
<=> x\(^3\)<xy\(^2\)(2)
x<y
<=> x.xy<y.xy
<=> x\(^2\)y<xy\(^2\)(3)
Từ (1),(2) và (3) ta có
x\(^3\)<y\(^3\)
Giải:
Do x và y là 2 đại lượng tỉ lệ thuận nên:
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}\Rightarrow\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow\frac{y_1}{6}=\frac{y_2}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y_1}{6}=\frac{y_2}{12}=\frac{y_2-y_1}{12-6}=\frac{4}{6}=\frac{2}{3}\)
+) \(\frac{y_1}{6}=\frac{2}{3}\Rightarrow y_1=4\)
+) \(\frac{y_2}{12}=\frac{2}{3}\Rightarrow y_2=8\)
Vậy \(y_1=4;y_2=8\)
1)
Ta có: x+y=2
nên \(\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy=2\)
hay xy=1
Ta có: \(x^3+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=2^3-3\cdot1\cdot2\)
=2
2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)
\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)
\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Leftrightarrow 3x^2-10xy+3y^2=0\Leftrightarrow (x-3y)(3x-y)=0\)
Thay trường hợp vòa là xong