Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
Bạn xem lại đề nhé: Ví dụ chọn x=2, y=1 ta có: 22-4.2.1+1+2=-1<0
Rút gọn trước nữa nhé, mình quên mất:
x2 (x + y) - (x2 - y2)
= x2 (x + y) - (x - y)(x + y)
= (x + y)(x2 - x + y)
Với x = -6; y = -8 thì ...
Dạ cảm ơn bạn nhiều, nhưng mình lú quá bạn có thể giải giúp mình được không ạ, kẻd quả củaminhf là 296 ạ, cảmonw bạ nhiều ạ
a) Đặt \(A=4x-x^2-5\)
\(-A=x^2-4x+5\)
\(-A=\left(x^2-4x+4\right)+1\)
\(-A=\left(x-2\right)^2+1\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge1\)
\(\Leftrightarrow A\le-1< 0\left(đpcm\right)\)
b) Đặt \(B=x^2-2x+5\)
\(B=\left(x^2-2x+1\right)+4\)
\(B=\left(x-1\right)^2+4\)
Mà \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow B\ge4>0\left(đpcm\right)\)
a)4x-x2-5 = -(x2-4x+4)-1= -(x-2)^2 -1 < 0 với mọi x (đpcm)
b) x2 -2x+5= (x2-2x+1)+4=(x-1)^2 +4 >0 với mọi x (đpcm)
a) \(x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1\\Do\left(x+y\right)^2>0\forall x\in R\\ \Rightarrow\left(x+y\right)^2+1>0\forall\in R\)