K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2019

23 tháng 1 2022

a) Xét tam giác ABD: AB = AD (gt). 

=> Tam giác ABD cân tại A.

Mà AH là phân giác góc BAD (gt).

=> AH là trung tuyến (Tính chất tam giác cân).

=> H là trung điểm của cạnh BD (đpcm).

a: Ta có: ΔABD cân tại A

mà AH là đường phân giác

nên H là trung điểm của BD

b: Xét ΔABF và ΔADF có 

AB=AD

\(\widehat{BAF}=\widehat{DAF}\)

AF chung

Do đó: ΔABF=ΔADF

Suy ra: FB=FD

Xét ΔBFE và ΔDFC có

FB=FD

\(\widehat{FBE}=\widehat{FDC}\)

BE=DC

Do đó: ΔBFE=ΔDFC

Suy ra: \(\widehat{BFE}=\widehat{DFC}\)

mà \(\widehat{DFC}+\widehat{DFB}=180^0\)

nên \(\widehat{BFE}+\widehat{BFD}=180^0\)

=>D,E,F thẳng hàng

a: Ta có: ΔABD cân tại A

mà AH là đường phân giác

nên H là trung điểm của BD

b: Xét ΔABF và ΔADF có 

AB=AD

\(\widehat{BAF}=\widehat{DAF}\)

AF chung

Do đó: ΔABF=ΔADF

Suy ra: FB=FD

Xét ΔBFE và ΔDFC có

FB=FD

\(\widehat{FBE}=\widehat{FDC}\)

BE=DC

Do đó: ΔBFE=ΔDFC

Suy ra: \(\widehat{BFE}=\widehat{DFC}\)

mà \(\widehat{DFC}+\widehat{DFB}=180^0\)

nên \(\widehat{BFE}+\widehat{BFD}=180^0\)

=>D,E,F thẳng hàng

24 tháng 12 2020
さ→❖๖☆☆ I⃣K⃣K⃣I⃣ G⃣ấU⃣ A⃣N⃣I⃣M⃣E⃣❖༻꧂ •๖ۣۜTεαм ƒαʋσυɾĭтε αηĭмε⁀ᶦᵈᵒᶫ

a: Xét ΔAMN có

Ax vừa là đường cao, vừa là phân giác

=>ΔAMN cân tại A

b: BE//AC

=>góc BEM=góc ANE

=>góc BEM=góc BME

=>BE=BM

Xét ΔDEB và ΔDNC có

góc DBE=góc DCN

DB=DC

góc BDE=góc NDC

=>ΔDEB=ΔDNC

=>BE=NC

=>BE=CN