a=a-c-b=4-8-a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức $x^2+y^2+z^2 \geq xy+yz+zx$ có:
$a^4+b^4+c^4 \geq (ab)^2+(bc)^2+(ca)^2 \geq abbc+bcca+abca=abc(a+b+c)$
b, đề đúng: $\dfrac{a^8+b^8+c^8}{(abc)^3} \geq \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
Có \dfrac{a^8+b^8+c^8}{(abc)^3} \geq \dfrac{(ab)^4+(bc)^4+(ca)^4}{(abc)^3} \geq \dfrac{(abbc)^2+(bcca)^2+(abca)^2}{(abc)^3}$
$\geq \dfrac{a^2+b^2+c^2}{abc} \geq \dfrac{ab+bc+ca}{abc}= \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
Cả hai phần dấu $=$ xảy ra $⇔a=b=c$
\( \dfrac{a^8+b^8+c^8}{(abc)^3} \geq \dfrac{(ab)^4+(bc)^4+(ca)^4}{(abc)^3} \geq \dfrac{(abbc)^2+(bcca)^2+(abca)^2}{(abc)^3}\)
chỗ bị sai đây bạn nhé
a)AM-GM:
\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4\cdot a^4\cdot b^4\cdot c^4}=4a^2bc\)
\(a^4+b^4+b^4+c^4\ge4ab^2c\)
\(a^4+b^4+c^4+c^4\ge4abc^2\)
Cộng vế theo vế ta được:
4\(\left(a^4+b^4+c^4+d^4\right)\ge4a^2bc+4ab^2c+4abc^2\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge abc\left(a+b+c\right)\)
1 cách khác: \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
\(2\left(a^2b^2+b^2c^2+a^2c^2\right)\ge2\sqrt{a^2b^4c^2}+2\sqrt{b^2a^2c^4}+2\sqrt{a^4b^2c^2}\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge ab^2c+abc^2+a^2bc=abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
tương tự với câu b
Có 20/39>1/2; 18/41<1/2 suy ra 20/39>18/41
22/27>22/29
18/43 = 1- 25/43
14/39 = 1- 25/ 39
mà 25/43< 25/43 suy ra 18/43> 14/39 (vì cùng 1 số mà trừ đi số nhỏ hơn thì sẽ lớn hơn số đó mà lại đem trừ đi số lớn hơn)
Vậy A>B