Tìm x,y biết x-y=2(x+Y)=x:y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2+y^2+xy-x+y+1=0$
$\Leftrightarrow 2x^2+2y^2+2xy-2x+2y+2=0$
$\Leftrightarrow (x^2+2xy+y^2)+(x^2-2x+1)+(y^2+2y+1)=0$
$\Leftrightarrow (x+y)^2+(x-1)^2+(y+1)^2=0$
Vì $(x+y)^2, (x-1)^2, (y+1)^2\ge 0$ với mọi $x,y\in\mathbb{R}$
Do đó để tổng của chúng $=0$ thì $(x+y)^2=(x-1)^2=(y+1)^2=0$
$\Leftrightarrow x=1; y=-1$
a, do x+y=30 và xy=221 nên u và v là nghiệm của pt :
x2-30x+221=0
\(\Delta^,\)=225-221=4 ;\(\sqrt{\Delta^,}\)=2
=> pt có hai nghiệm phân biệt .
x1=13 ; x2=17
Vậy x=13;y=17 hoặc x=17; y=13
TA CÓ: \(B-\left(x^2+xy+y^2\right)=2x^2-xy+y^2\)
\(\Rightarrow B=\left(2x^2-xy+y^2\right)+\left(x^2+xy+y^2\right)\)
\(B=2x^2-xy+y^2+x^2+xy+y^2\)
\(B=\left(2x^2+x^2\right)+\left(y^2+y^2\right)+\left(xy-xy\right)\)
\(B=3x^2+2y^2\)
TA CÓ: \(\left(\frac{1}{2}.xy+x^2-\frac{1}{2}x^2y\right)-C=-xy+x^2y+1\)
\(\Rightarrow C=\left(\frac{1}{2}xy+x^2-\frac{1}{2}x^2y\right)-\left(-xy+x^2y+1\right)\)
\(C=\frac{1}{2}xy+x^2-\frac{1}{2}x^2y+xy-x^2y-1\)
\(C=\left(\frac{1}{2}xy+xy\right)+\left(\frac{-1}{2}x^2y-x^2y\right)+x^2-1\)
\(C=\frac{3}{2}xy+\frac{-3}{2}x^2y+x^2-1\)
mk nha
a) \(x+y=xy\)\(\Leftrightarrow xy-x-y=0\)\(\Leftrightarrow x\left(y-1\right)-y+1=1\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=1\)\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)
Lập bảng giá trị ta có:
\(x-1\) | \(-1\) | \(1\) |
\(x\) | \(0\) | \(2\) |
\(y-1\) | \(-1\) | \(1\) |
\(y\) | \(0\) | \(2\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(0;0\right)\)hoặc \(\left(2;2\right)\)
b) \(xy-x-y=2\)\(\Leftrightarrow x\left(y-1\right)-y+1=3\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=3\)\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=3\)
Lập bảng giá trị ta có:
\(x-1\) | \(-1\) | \(-3\) | \(1\) | \(3\) |
\(x\) | \(0\) | \(-2\) | \(2\) | \(4\) |
\(y-1\) | \(-3\) | \(-1\) | \(3\) | \(1\) |
\(y\) | \(-2\) | \(0\) | \(4\) | \(2\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là \(\left(0;-2\right)\), \(\left(-2;0\right)\), \(\left(2;4\right)\), \(\left(4;2\right)\)