\(\frac{45^{10}.20^{10}}{75^{15}}\)= ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{45^{10}\times5^{20}}{75^{15}}=243\)
mk ko nhớ cách giải, chỉ có kết quả, nếu đúng k cho mk nha
Ta có : \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{9^{10}.5^{10}.5^{20}}{3^{15}.25^{15}}=\frac{\left(3^2\right)^{10}.5^{30}}{3^{15}.\left(5^2\right)^{15}}=\frac{3^{20}.5^{30}}{3^{15}.5^{30}}=3^5\)
\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{3^{20}.5^{10}.5^{20}}{3^{15}.5^{30}}=\frac{3^{20}.5^{30}}{3^{15}.5^{30}}=3^5=243\)
.Check mk nhá •<3 •
\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{45^{10}.25^{10}}{75^{10}.75^5}=\frac{1125^{10}}{75^{10}.75^5}=\frac{15^{10}}{75^5}=243\)
Bài làm
\(A=\frac{45^{10}\cdot5^{20}}{75^{15}}\)
\(A=\frac{\left(3^2\right)^{10}\cdot5^{10}\cdot5^{20}}{3^{15}\cdot\left(5^2\right)^{15}}\)
\(A=\frac{3^{20}\cdot5^{30}}{3^{15}\cdot5^{30}}\)
\(A=3^5\)
Vậy \(A=3^5\)
\(B=\frac{2^{15}\cdot5^{20}}{6^6\cdot8^3}\)
\(B=\frac{2^{15}\cdot5^{20}}{2^6\cdot3^3\cdot\left(2^3\right)^3}\)
\(B=\frac{2^{15}\cdot5^{20}}{2^{15}\cdot3^3}\)
\(B=\frac{5^{20}}{3^3}\)
Vậy \(B=\frac{5^{20}}{3^3}\)
\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(5.3^2\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\frac{5^{10}.3^{20}.5^{20}}{3^{15}.5^{30}}=\frac{5^{30}.3^{20}}{3^{15}.5^{30}}=\frac{3^5}{1}=3^5=243\)
Ta có: 4510.520=(32.5)10.(52)10
=320.(52)5.2510
=315.35.255.2510
=35(315.2515)
=35.7515
Do đó: \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{3^5.75^{15}}{7^{15}}=3^5\)
\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\frac{\left(3^2\right)^{10}.5^{10}.5^{20}}{3^{15}.\left(5^2\right)^{15}}=\frac{3^{20}.5^{30}}{3^{15}.5^{30}}=3^5=243\)
\(\frac{45^{10}20^{10}}{75^{15}}\)=\(\frac{1125^{10}}{75^5.75^{10}}\)=\(\frac{1125^{10}}{75}\)=\(\frac{1}{75^5}\)=\(\frac{15^{10}}{75^5}\)=\(\frac{15^5.15^5}{75^5}\)=\(\frac{15^5}{75}\).\(15^5\)=\(\frac{1^5}{3}\).\(15^5\)=\(\frac{1}{3}.15^5\)=\(^{5^5}\)=3125