K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

A B C E D 1 2 1 2 3

a) xét \(\Delta ABE\)và \(\Delta DCE\)ta có:

AE=ED(gt)

BE=EC(E là trug điểm của BC)

\(\widehat{E1}=\widehat{E2}\)(đối đỉnh)

=> \(\Delta ABE\)\(\Delta DCE\)(c.g.c)

b) từ câu a => \(\widehat{B1}=\widehat{C2}\)(cặp góc tương ứng)

mà hai góc đó ở vị trí so le trong => AB//DC (bn viết sai đề DE)

c) xét \(\Delta ABE\)và \(\Delta ACE\)ta có:

AE là cạnh chung

AB=AC(gt)

BE=EC(E là trug điểm của BC)

=> \(\Delta ABE\)=\(\Delta ACE\)(c.c.c)

=> \(\widehat{E1}=\widehat{E3}\)(cặp góc t/ứng) 

mà \(\widehat{E1}+\widehat{E3}=180^o\Rightarrow2\widehat{E1}=180^o\Rightarrow\widehat{E1}=90^o\)

=> AE vuông góc với BC (đpcm)

p/s: tớ làm 1 bài thui nha :)) dài quá

28 tháng 11 2018

Để tui bài 2!

BEQJQxI.png

a) Xét tam giác AKB và tam giác AKC có: 

\(AB=AC\) (gt)

\(BK=CK\) (do K là trung điểm BC)

\(AK\) (cạnh chung)

Do đó \(\Delta AKB=\Delta AKC\) (1)

b) \(\Delta AKB=\Delta AKC\Rightarrow\widehat{AKB}=\widehat{AKC}\) (hai góc tương ứng)

Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) (Kề bù)

Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{\widehat{AKB}}{1}=\frac{\widehat{AKC}}{1}=\frac{\widehat{ABK}+\widehat{AKC}}{1+1}=\frac{180^o}{2}=90^o\)

Suy ra AK vuông góc với BC  (2)

c)\(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}=45^o\) (Do  \(\widehat{KAB} +\widehat{KAB}=90^o\) và \(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}\))

Mà \(\widehat{AKC}=90^o\) (CMT câu b)

Suy ra \(\widehat{KCA}=180^o-\widehat{KAC}-\widehat{AKC}=180^o-45^o-90^o=45^o\)

Mà \(\widehat{KCA}+\widehat{ACE}=90^o\) (gt,khi vẽ đường vuông góc BC cắt AB tại E)

Suy ra \(\widehat{ACE}=90^o-\widehat{KCA}=90^o-45^o=45^o\)

Hay \(\widehat{KCA}=\widehat{ACE}=45^o\).Mà hai góc này ở vị trí so le trong,nên: \(EC//AK\) (3)

Từ (1),(2) và (3) ta có đpcm.

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Lời giải:

a) Xét tam giác AKB và AKC có:

AB=AC (giả thiết)

KB=KC (do K là trung điểm của BC)

AK chung

Do đó: \(\triangle AKB=\triangle AKC(c.c.c)\) (đpcm)

\(\Rightarrow \widehat{AKB}=\widehat{AKC}\). Mà \(\widehat{AKB}+\widehat{AKC}=\widehat{BKC}=180^0\). Do đó:

\(\widehat{AKB}=\widehat{AKC}=90^0\Rightarrow AK\perp BC\) (đpcm)

b) 

Ta thấy: \(EC\perp BC; AK\perp BC\) (đã cm ở phần a)

\(\Rightarrow EC\parallel AK\) (đpcm)

c) Vì tam giác ABC là tam giác vuông cân tại A nên \(\widehat{B}=45^0\)

Tam giác CBE vuông tại C có \(\widehat{B}=45^0\) \(\Rightarrow \widehat{E}=180^0-(\widehat{C}+\widehat{B})=180^0-(90^0+45^0)=45^0\)

\(\Rightarrow \widehat{E}=\widehat{B}\) nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Hình vẽ: undefined

11 tháng 12 2020

Bạn kiểm tra lại đề câu cuối!

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại Ea) chứng minh AB=EBb) chứng minh tam giác BED vuôngc) DE cắt AB tại F, chứng minh AE//FCBÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại Ia) chứng minh tam giác IBC cânb)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quyBÀI 3 cho tam giác ABC...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E

a) chứng minh AB=EB

b) chứng minh tam giác BED vuông

c) DE cắt AB tại F, chứng minh AE//FC

BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I

a) chứng minh tam giác IBC cân

b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy

BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm

a)so sánh góc A và góc C

b)chứng minh rằng tam giác ABH = tam giác ACH

c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG

d)tính độ dài AG

e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG

BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F

a)chứng minh tam giác ABE = tam giác DBE

b) chứng minh tam giác BCF cân

c) chứng minh 3 điểm F.D,E thẳng hàng

d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM

BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I

a)chứng minh rằng tam giác BDC = tam giác CEB

b)so sánh góc IBE và góc ICD

c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H

BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm

a)tính BC

b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB

c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE

d) chứng minh BE vuông góc FC

2
5 tháng 10 2017

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E

a) chứng minh AB=EB

b) chứng minh tam giác BED vuông

c) DE cắt AB tại F, chứng minh AE//FC

BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I

a) chứng minh tam giác IBC cân

b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy

BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm

a)so sánh góc A và góc C

b)chứng minh rằng tam giác ABH = tam giác ACH

c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG

d)tính độ dài AG

e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG

BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F

a)chứng minh tam giác ABE = tam giác DBE

b) chứng minh tam giác BCF cân

c) chứng minh 3 điểm F.D,E thẳng hàng

d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM

BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I

a)chứng minh rằng tam giác BDC = tam giác CEB

b)so sánh góc IBE và góc ICD

c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H

BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm

a)tính BC

b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB

c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE

d) chứng minh BE vuông góc FC

22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

12 tháng 3 2022

a, Xét tam giác AHB và tam giác AHC có 

AH _ chung 

AB = AC 

Vậy tam giác AHB~ tam giác AHC (ch-cgv) 

Ta có tam giác ABC cân tại A, có AH là đường cao 

đồng thười là đường pg 

b, Xét tam giác AMH và tam giác NAH có 

HA _ chung 

^MAH = ^NAH 

Vậy tam giác AMH = tam giác NAH (ch-gn) 

=> AM = AN ( 2 cạnh tương ứng ) 

c, Ta có AM/AB = AN/AC => MN // BC 

d, Ta có \(AH^2+BM^2=AN^2+BH^2\)

Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)

Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)

Lại có AM = AN (cmt) 

\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M) 

Vậy ta có đpcm 

 

12 tháng 3 2022

a vẽ hình cho e đc k ạ

20 tháng 12 2020

giúp mình ik mn mình sắp thi rồigianroikhocroi

20 tháng 12 2020

mn nhớ cho mình hình vẽ nữa nha