Cho tam giác ABC có góc A = 20 độ. AB=c, AC=b, BC=a. Chứng minh rằng a^3 + b^3 = 3ab^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC cân tại A, có ∠A = 20◦ , độ dài BC = a, AC = AB = b. Chứng minh rằng a3 + b3 = 3ab2
Tui nghĩ đề bị thiếu rồi. Phải là \(\Delta ABC\)có \(AB=AC\) mới đúng.
Trên nửa m.phẳng bờ \(BC\)chứ \(A\) vẽ tia \(Bx\)sao cho \(\widehat{CBx}=20^0\)
Gọi \(D\)là giao điểm của \(Bx\)và \(AC\), \(H\)là hình chiếu của \(A\)trên \(Bx\)
Theo đề ta có: \(AB=AC\Rightarrow\Delta ABC\)cân tại \(A\) và \(\widehat{A}=20^0\Rightarrow\widehat{ABC}=\widehat{ACB}=80^0\)
Lại có: \(\widehat{ABH}+\widehat{HBC}=\widehat{ABC}=80^0\)
Và: \(\widehat{CBx}=20^0\Rightarrow\widehat{ABH}=60^0\Rightarrow BH=\frac{b}{2};AH=\frac{\sqrt{3}b}{2}\)
\(\Rightarrow\Delta CBD\)cân tại \(B\Rightarrow BD=BC=a\)
Lại có: \(\Delta CBD~\Delta CAB\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{CD}{BC}\Rightarrow CD=\frac{a^2}{b}\)
Ta có: \(AD=AC-CD=b-\frac{a^2}{b};DH=BH-BD=\frac{b}{2}-a\)
Áp dụng định lí Pitago trong \(\Delta ADH\)vuông tại \(H\) có:
\(\Rightarrow AD^2=AH^2+DH^2\)
Vì vậy: \(\left(b-\frac{a^2}{b}\right)^2=\left(\frac{\sqrt{3}b}{2}\right)^2+\left(\frac{b}{2}-a\right)^2\)
\(\Leftrightarrow b^2-2a^2+\frac{a^4}{b^2}=\frac{3b^2}{4}+\frac{b^2}{4}-ab+a^2\)
\(\Leftrightarrow b^2-2a^2+\frac{a^4}{b^2}=b^2-ab+a^2\)
\(\Leftrightarrow\frac{a^4}{b^2}+ab=3a^2\)
\(\Leftrightarrow a^3+b^3=3ab^2\left(đpcm\right)\)
Trần Minh Phong sao làm giống trong cho tam giac ABC, AB=AC=b,A=20,BC=a.CM:a3+b3= 3ab2? | Yahoo Hỏi & Đáp
Trên đường thẳng BC lấy D; E sao cho ∆ ADE đều (B ở giữa C và D). Gọi H là trung điểm BC và DE. Đặt AD = DE = x => BD = (DE -
BC)/2 = (x - a)/2; 2BH = BC => 4BH² = a²
Ta có : 3x² = 3AD² = 4AH² = 4(AB² - BH²) = 4b² - a²
Mặt khác dễ thấy AB là phân giác góc A của ∆ ADC nên ta có : AD/AC = BD/BC <=> x/b = (x - a)/2a <=> (b - 2a)x = ab <=> (b -
2a)²(3x²) = 3a²b² <=> (b - 2a)²(4b² - a²) = 3a²b² <=> b⁴ - a⁴ - 4ab³ + a³b + 3a²b² = 0
<=> (b - a)(a³ + b³ - 3ab²) = 0
<=> a³ + b³ - 3ab² = 0 (vì b > a)
<=> a³ + b³ = 3ab² (đpcm)
Kẻ đường cao BD ứng với AC. Do góc A tù \(\Rightarrow\) D nằm ngoài đoạn thẳng AC hay \(CD=AD+AC\) và \(\widehat{DAB}=180^0-120^0=60^0\)
Áp dụng định lý Pitago:
\(AB^2=BD^2+AD^2\) \(\Rightarrow BD^2=AB^2-AD^2\)
Trong tam giác vuông ABD:
\(cos\widehat{BAD}=\dfrac{AD}{AB}\Rightarrow\dfrac{AD}{AB}=cos60^0=\dfrac{1}{2}\Rightarrow AD=\dfrac{1}{2}AB\)
\(\Rightarrow BD^2=AB^2-\left(\dfrac{1}{2}AB^2\right)=\dfrac{3}{4}AB^2\)
Pitago tam giác BCD:
\(BC^2=BD^2+CD^2=\dfrac{3}{4}AB^2+\left(AD+AC\right)^2\)
\(=\dfrac{3}{4}AB^2+\left(\dfrac{1}{2}AB+AC\right)^2\)
\(=\dfrac{3}{4}AB^2+\dfrac{1}{4}AB^2+AB.AC+AC^2\)
\(=AB^2+AB.AC+AC^2\)
Hay \(a^2=b^2+c^2+bc\)
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
hay BC=13cm
Ta có: ΔABC vuông tại A
nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC
hay \(R=\dfrac{BC}{2}=\dfrac{13}{2}=6.5\left(cm\right)\)
Bài 2:
Ta có: ABCD là hình thang cân
nên A,B,C,D cùng thuộc 1 đường tròn\(\left(đl\right)\)
hay bán kính đường tròn ngoại tiếp ΔABC cũng là bán kính đường tròn ngoại tiếp tứ giác ABCD
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Suy ra: Bán kính của đường tròn ngoại tiếp tứ giác ABCD là \(R=\dfrac{BC}{2}=10\left(cm\right)\)
dựng tia Bx cắt cạnh AC tại D sao cho góc CBx = 20o
có gócBCD = 80o => góc BDC = 180o-20o-80o = 80o = góc BCD
=> tgiác BCD cân (tại B) ; gọi H là hình chiếu của A trên Bx
có góc ABH = 80o - 20o = 60o => HAB là nửa tgiác đều
=> BH = AB/2 = b/2 ; AH^2 = 3b^2/4
BD = BC = a => DH = BH-BD = b/2 - a
hai tgiác cân BCD và ABC đồng dạng => CD/BC = BC/AB
=> CD = BC^2/AB = a^2/b
=> AD = AC - CD = b - a^2/b
Cho tgiác vuông HAD ta có: AD^2 = AH^2 + DH^2
Thay số từ các tính toán trên:
(b - a^2/b)^2 = 3b^2/4 + (b/2 - a)^2
<=> b^2 + a^4/b^2 - 2a^2 = 3b^2/4 + b^2/4 + a^2 - ab
<=> a^4/b^2 = 3a^2 - ab
<=> a^3/b^2 = 3a - b
<=> a^3 = 3a.b^2 - b^3
<=> a^3 + b^3 = 3a.b^2 đpcm
khó hiểu quá