Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC cân tại A, có ∠A = 20◦ , độ dài BC = a, AC = AB = b. Chứng minh rằng a3 + b3 = 3ab2
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
dựng tia Bx cắt cạnh AC tại D sao cho góc CBx = 20o
có gócBCD = 80o => góc BDC = 180o-20o-80o = 80o = góc BCD
=> tgiác BCD cân (tại B) ; gọi H là hình chiếu của A trên Bx
có góc ABH = 80o - 20o = 60o => HAB là nửa tgiác đều
=> BH = AB/2 = b/2 ; AH^2 = 3b^2/4
BD = BC = a => DH = BH-BD = b/2 - a
hai tgiác cân BCD và ABC đồng dạng => CD/BC = BC/AB
=> CD = BC^2/AB = a^2/b
=> AD = AC - CD = b - a^2/b
Cho tgiác vuông HAD ta có: AD^2 = AH^2 + DH^2
Thay số từ các tính toán trên:
(b - a^2/b)^2 = 3b^2/4 + (b/2 - a)^2
<=> b^2 + a^4/b^2 - 2a^2 = 3b^2/4 + b^2/4 + a^2 - ab
<=> a^4/b^2 = 3a^2 - ab
<=> a^3/b^2 = 3a - b
<=> a^3 = 3a.b^2 - b^3
<=> a^3 + b^3 = 3a.b^2 đpcm
Đề thi HSG lớp 9 tỉnh Bình Định năm học 2011 - 2012 - Tài liệu - Đề thi - Diễn đàn Toán học
Gọi Giang Hồ là đúng rồi. Cái đề cho vầy chả biết a, b ở đâu để mà làm nữa :(
góc C=180-30-80=70 độ
Xét ΔABC có
AB/sinC=AC/sinB=BC/sinA
=>3/sin70=AC/sin80=BC/sin30
=>\(BC\simeq1,6\left(cm\right);AC\simeq3,14\left(cm\right)\)
Trần Minh Phong sao làm giống trong cho tam giac ABC, AB=AC=b,A=20,BC=a.CM:a3+b3= 3ab2? | Yahoo Hỏi & Đáp
Trên đường thẳng BC lấy D; E sao cho ∆ ADE đều (B ở giữa C và D). Gọi H là trung điểm BC và DE. Đặt AD = DE = x => BD = (DE -
BC)/2 = (x - a)/2; 2BH = BC => 4BH² = a²
Ta có : 3x² = 3AD² = 4AH² = 4(AB² - BH²) = 4b² - a²
Mặt khác dễ thấy AB là phân giác góc A của ∆ ADC nên ta có : AD/AC = BD/BC <=> x/b = (x - a)/2a <=> (b - 2a)x = ab <=> (b -
2a)²(3x²) = 3a²b² <=> (b - 2a)²(4b² - a²) = 3a²b² <=> b⁴ - a⁴ - 4ab³ + a³b + 3a²b² = 0
<=> (b - a)(a³ + b³ - 3ab²) = 0
<=> a³ + b³ - 3ab² = 0 (vì b > a)
<=> a³ + b³ = 3ab² (đpcm)