Kẻ hộ mk hình Cho đường tròn (O; R) và điểm A cố định nằm ngoài đường tròn. Một đường thẳng d đi qua A cắt đường tròn (O; R) tại B và C (BC không đi qua O, B nằm giữa A và C). Từ A kẻ các tiếp tuyến AM, AN tới đường tròn (M, N là hai tiếp điểm, M thuộc mặt phẳng bờ AC có chứa điểm O), gọi H là trung điểm của BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MA,MB là tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại trung điểm của mỗi đường
=>MO\(\perp\)AB tại H và H là trung trung điểm của AB
b: Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
a)a) Theo tính chất hai tiếp tuyến cắt nhau ta có:
+ ABAB là tia phân giác của góc HADHAD
Suy ra: ˆDAB=ˆBAHDAB^=BAH^
+ ACAC là tia phân giác của góc HAEHAE
Suy ra: ˆHAC=ˆCAEHAC^=CAE^
Ta có: ˆHAD+ˆHAE=2(ˆBAH+ˆHAC)HAD^+HAE^=2(BAH^+HAC^)=2.ˆBAC=2.90∘=180∘=2.BAC^=2.90∘=180∘
Vậy ba điểm D,A,ED,A,E thẳng hàng.
b)b) Gọi MM là trung điểm của BCBC
Theo tính chất của tiếp tuyến, ta có: AD⊥BD;AE⊥CEAD⊥BD;AE⊥CE
Suy ra: BD//CEBD//CE
Vậy tứ giác BDECBDEC là hình thang.
Vì MM là trung điểm của BCBC và AA là trung điểm của DEDE (vì DE là đường kính đường tròn (A))
Nên MAMA là đường trung bình của hình thang BDECBDEC
Suy ra: MA//BD⇒MA⊥DEMA//BD⇒MA⊥DE (vì BD⊥DEBD⊥DE)
Trong tam giác vuông ABCABC có AM là đường trung tuyến nên ta có: MA=MB=MC=BC2MA=MB=MC=BC2
Suy ra MM là tâm đường tròn đường kính BCBC với MAMA là bán kính
Vậy DEDE là tiếp tuyến của đường tròn tâm MM đường kính BC.
O C D M I H B
a) Xét tam giác cân OCD có OH là đường cao nên đồng thời là trung tuyến. Vậy thì HC = HD.
Xét tứ giác ODBC có hai đường chéo cắt nhau tại trung điểm mỗi đường nên nó là hình bình hành.
Lại có hai đường chéo OB và CD vuông góc với nhau nên ODBC là hình thoi.
b) Do ODBC là hình thoi nên OC = CB.
Xét tam giác OBC có OB = OC = BC ( = R) nên OBC là tam giác đều. Vậy thì \(\widehat{OBC}=60^o\)
c) Xét tam giác OCM có CB là đường trung tuyến ứng với cạnh OM.
Lại có \(CB=\frac{1}{2}OM\) nên tam giác OCM vuông tại C.
Từ đó suy ra MC là tiếp tuyến tại C của đường tròn (O)
d) Xét tam giác vuông OCM có CH là đường cao nên áp dụng hệ thức lượng trong tam giác vuông, ta có:
\(CH^2=OH.HM=HB.HM\)
Tam giác OCI vuông tại C có OH là đường cao nên ta có:
\(OH^2=HI.HC=HI.HD\)
Vậy nên \(HI.HD+HB.HM=OH^2+CH^2=OC^2=R^2\)
Vậy \(HI.HD+HB.HM=R^2\)
a:góc AHM+góc AKM=180 độ
=>AHMK nội tiếp
b: góc MBH+góc ABM=180 độ
góc MCK+góc ACM=180 độ
góc ABM=góc ACM
=>góc MBH=góc MCK
mà góc MHB=góc MKC
nên ΔMHB đồng dạng vơi ΔMKC
=>MH/MK=MB/MC
=>MH*MC=MK*MB
a: góc AHM+góc AKM=180 độ
=>AHMK là tứ giác nội tiếp
b: góc HBM=180 độ-góc ABM
góc KCM=180 độ-góc ACM
góc ABM=góc ACM
=>góc HBM=góc KCM
mà góc MHB=góc MKC
nên ΔMBH đồng dạng với ΔMCK
=>MB/MC=MH/MK
=>MB*MK=MC*MH