\(\frac{1}{3}\)+\(\frac{1}{9}\) +\(\frac{1}{27}\) +\(\frac{1}{81}\) +\(\frac{1}{243}\)
giúp tớ với ai giải đúng và nhanh nhất tớ sẽ tick cho người đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}×\frac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{1}{\sqrt{x}+2}\)
A đạt GTLN khi \(2+\sqrt{x}\)đạt GTNN hay x là nhỏ nhất. Vậy A đạt GTLN là \(\frac{1}{2}\)khi x = 0
b) \(\frac{4}{9}x-\frac{1}{2}=\frac{-5}{9}\)
\(\Rightarrow\frac{4}{9}x=\frac{-5}{9}+\frac{1}{2}\)
\(\Rightarrow\frac{4}{9}x=\frac{-1}{18}\)
\(\Rightarrow x=\frac{-1}{18}:\frac{4}{9}\)
\(\Rightarrow x=\frac{-1}{8}\)
\(G=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
\(3G=3+1+\frac{1}{3}+...+\frac{1}{3^4}\)
\(3G-G=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)
\(2G=3-\frac{1}{3^5}\)
\(2G=3-\frac{1}{243}\)
\(2G=\frac{729}{243}-\frac{1}{243}\)
\(G=\frac{728}{243}:2\)
\(G=\frac{364}{243}\)
\(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{x.\left(x+1\right)}=\frac{6042}{2015}\)
\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{6042}{2015}\)
\(1-\frac{1}{x+1}=\frac{6042}{2015}:3\)
\(1-\frac{1}{x-1}=\frac{2014}{2015}\)
\(\frac{1}{x-1}=1-\frac{2014}{2015}\)
\(\frac{1}{x-1}=\frac{1}{2015}\)
\(\Rightarrow x-1=2015\)
\(\Rightarrow x=2016\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\frac{ab+bc+ca}{abc}=0\)
\(ab+bc+ca=0\Leftrightarrow\hept{\begin{cases}ab=-bc-ca\\bc=-ab-ca\end{cases},,,ca=-ab-bc}\)
\(\frac{a^2}{a^2+bc-ab-ca}=\frac{a^2}{a\left(a-b\right)-c\left(a-b\right)}=\frac{a^2}{\left(a-b\right)\left(a-c\right)}\)
tương tự
\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(P=\frac{a^2\left(b-c\right)+b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(c-a\right)\left(c-b\right)}\)
có \(a^2\left(b-c\right)+b^2\left(a-c\right)+c^2\left(a-b\right)=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)
\(P=\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(c-a\right)\left(c-b\right)}=1\)
có cần phải giải ra ko
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{81}{243}+\frac{27}{243}+\frac{9}{243}+\frac{3}{243}+\frac{1}{243}\)
\(=\frac{121}{243}\)
mk ko bít đúng hay ko nữa có gì mấy bạn góp ý cho mình nhé ! Thanks