Chứng minh rằng :
a)5^100-5^99+5^98 chia hết cho 7
b)7^29+7^28-7^27 chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR: \(5^{100}-5^{99}+5^{98}\)chia hết cho 7
Ta có: \(5^{100}-5^{99}+5^{98}\)
\(=5^{98}.5^2-5^{98}.5+5^{98}\)
\(=5^{98}.\left(5^2-5-1\right)\)
\(=5^{98}.21\)
\(=5^{98}.3.7\)
=> \(5^{100}-5^{99}+5^{98}\)chia hết cho 7
\(5^{100}-5^{99}+5^{98}\)
\(=5^{98}.\left(5^2-5+1\right)\)
\(=5^{98}.21\)
\(=5^{98}.3.7\)chia hết cho 7
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
(1+23)+(2+24)+...+(28+211)
9+2(1+23)+...+28(1+23)
9(1+2+...+28) chia hết cho 9
=>( 2^0+2^1+2^2 + ...+2^11) chia hết cho 9
c)(5+52)+(53+54)+...+(599+5100)
5(1+5)+53(1+5)+...+599(1+5)
6(5+53+...+599) chia hết cho 3
a/ \(5^{98}\left(1+5+5^2\right)=5^{98}.31\) chia hết cho 31
b/ \(7^{150}\left(7^2-1+7\right)=7^{150}.55\) chia hết cho 55
Bài 1 :
a)
Chứng minh chiều \("\Rightarrow"\) :
Ta có : \(abcd⋮99\Rightarrow ab.100+cd⋮99\)
\(\Rightarrow99ab+ab+cd⋮99\)
Mà : \(99ab⋮99\Rightarrow ab+cd⋮99\) ( đpcm )
Chứng minh chiều \("\Leftarrow"\) :
Ta có : \(ab+cd⋮99\)
\(\Rightarrow99ab+ab+cd⋮99\)
\(\Rightarrow100ab+cd⋮99\)
hay : \(abcd⋮99\) ( đpcm )
b) Ta có :
\(abcd=1000a+100b+10c+d\)
\(=100ab+cd\)
\(=200cd+cd=201cd\)
Mà \(201⋮67\Rightarrow ab=2cd⋮67\) ( đpcm )
c) Gọi số tự nhiên ba chữ số đó là \(aaa\)
Ta có : \(aaa=a.111=a.37.3⋮37\)
\(\Rightarrow\) Mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37 ( đpcm )
a , 5^5 -5^4+5^3=5^3.5^2 -5^3.5+5^3
=5^3(5^2-5+1)=5^3.21
vì 21 chia hết cho 7 =>5^3.21 chia hết cho 7
vậy 5^5 -5^4+5^3 chia hết cho 7
b, 7^6+7^5-7^4
=7^4(7^2+7-1)
=7^4.55=7^4.5.11 chia hết cho 11
a , 5^5 -5^4+5^3=5^3.5^2 -5^3.5+5^3
=5^3(5^2-5+1)=5^3.21
vì 21 chia hết cho 7 =>5^3.21 chia hết cho 7
vậy 5^5 -5^4+5^3 chia hết cho 7
b, 7^6+7^5-7^4
=7^4(7^2+7-1)
=7^4.55=7^4.5.11 chia hết cho 11
giai xoq moq pn **** gium mk nke
#Nguồn: Băng
Ta có: \(7^{100}+7^{99}+7^{98}\)
\(=7^{98}\left(1+7^1+7^2\right)\)
\(=7^{98}\times57\) chia hết cho \(57\)
Vậy \(\left(7^{100}+7^{99}+7^{98}\right)⋮57\left(đpcm\right)\)
A = 7100 + 799 + 798
A = 798.72 + 798.7 + 798
A = 798.( 72 + 7 + 1)
A = 798.57 chia hết cho 57
=> 7100 + 799 + 798 chia hết cho 57 (đpcm)
a. 5100 - 599 + 598
= 598.(52 - 5 + 1)
= 598.(25 - 5 + 1)
= 598.21
= 598.3.7 chia hết cho 7
Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).
b. 729 + 728 - 727
= 727.(72 + 7 - 1)
= 727.(49 + 7 - 1)
= 727.55
= 727.5.11 chia hết cho 11
Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).
a. 5100 - 599 + 598
= 598.(52 - 5 + 1)
= 598.(25 - 5 + 1)
= 598.21
= 598.3.7 chia hết cho 7
Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).
b. 729 + 728 - 727
= 727.(72 + 7 - 1)
= 727.(49 + 7 - 1)
= 727.55
= 727.5.11 chia hết cho 11
Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).