K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

Ta có : \(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)

Đặt \(x^2+5x+5=t\)\(\Rightarrow A=\left(t-1\right)\left(t+1\right)=t^2-1\ge-1\)

Suy ra Min A = -1 \(\Leftrightarrow t=0\Leftrightarrow x^2+5x+5=0\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+\sqrt{5}}{2}\\x=\frac{-5-\sqrt{5}}{2}\end{cases}}\)

10 tháng 9 2016

LÀM dùm bn 1 câu khó nhất nhé;

B = (x-1)2 + ( y -2)2 +2016 -1 -4

GTNN B = 2011

10 tháng 9 2016

A=3(x^2-2x-1/3)

=3(x-1)^2 -4/3

ta có (x-1)^2 >= 0

suy ra a>= 0-4/3

dấu bằng xảy ra khi x-1=0

                                x=1

vậy giá trị nhỏ nhất của A là -4/3 khi x=1

26 tháng 6 2018

\(A=4x^2-12x+11\)

\(A=\left(2x\right)^2-2.2x.3+3^2+2\)

\(A=\left(2x-3\right)^2+2\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)

Dấu = xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Vậy Amin=2\(\Leftrightarrow x=\frac{3}{2}\)

\(B=x^2-2x+y^2+4y+6\)

\(B=\left(x^2-2x+1\right)+\left(y^2+2.2y+2^2\right)+1\)

\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\)

Ta có:  \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y}\)

Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

Vậy Bmin=1\(\Leftrightarrow x=1;y=-2\)

\(A=-x^2-6x+1\)

\(\Rightarrow-A=x^2+6x-1\)

\(-A=\left(x^2+2.3x+3^2\right)-10\)

\(-A=\left(x+3\right)^2-10\)

\(\Rightarrow A=-\left(x+3\right)^2+10\)

Ta có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow-\left(x+3\right)^2\le0\forall x\Rightarrow-\left(x+3\right)^2+10\le10\forall x\)

Dấu = xảy ra \(\Leftrightarrow-\left(x+3\right)^2=0\Leftrightarrow\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy Amax=10\(\Leftrightarrow\)x= -3

Sửa đề:

\(B=-2x^2-8x-6\)

\(B=-2.\left(x^2+2.2x+2^2\right)+2\)

\(B=-2.\left(x+2\right)^2+2\)

Ta có: \(2.\left(x+2\right)^2\ge0\forall x\Rightarrow-2.\left(x+2\right)^2\le0\forall x\Rightarrow-2.\left(x+2\right)^2+2\le2\forall x\)

Dấu = xảy ra \(\Leftrightarrow-2.\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy Bmax=2\(\Leftrightarrow x=-2\)

26 tháng 6 2018

Đề phải là tìm min mới đúng

a, A=4x2-12x+11

=(4x2-12x+9)+2

=(2x-3)2+2

Vì (2x-3)2 \(\ge\) 0 => A=(2x-3)2+2 \(\ge\) 2

Dấu "=" xảy ra khi 2x-3=0 <=> x=3/2

Vậy Amin = 2 khi x=3/2

b, B=x2-2x+y2+4y+6

=(x2-2x+1)+(y2+4y+4)+1

=(x-1)2+(y+2)2+1

Vì \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

\(\Rightarrow B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu "=" xảy ra khi x=1,y=-2

Vậy Bmin = 1 khi x=1,y=-2

7 tháng 12 2015

a) =(5x)^2-2*5x+1+3

   =(5x-1)^2+3

suy ra min=3

b) = -(x^2-2x+1)-1

    =-(x^2-1)^2-1

suy ra Max=-1

c)=(x^2-2x+1)+(y^2-4y+4)+1

  =(x^2-1)^2+(y^2-2)^2+1

suy ra Min=1

# mk ko chắc lắm đâu

11 tháng 10 2020

A = 2x2 + 6x = 2( x2 + 3x + 9/4 ) - 9/2 = 2( x + 3/2 )2 - 9/2 ≥ -9/2 ∀ x

Dấu "=" xảy ra khi x = -3/2

=> MinA = -9/2 <=> x = -3/2

B = x2 - 2x + y2 - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 2

=> MinB = 1 <=> x = 1 ; y = 2

C = x2 - 2xy + 6y2 - 12x + 2y + 45

= ( x2 - 2xy + y2 - 12x + 12y + 36 ) + ( 5y2 - 10y + 5 ) + 4

= [ ( x2 - 2xy + y2 ) - ( 12x - 12y ) + 36 ] + 5( y2 - 2y + 1 ) + 4

= [ ( x - y )2 - 2( x - y ).6 + 62 ] + 5( y - 1 )2 + 4

= ( x - y - 6 )2 + 5( y - 1 )2 + 4 ≥ 4 ∀ x, y

Dấu "=" xảy ra khi x = 7 ; y = 1

=> MinC = 4 <=> x = 7 ; y = 1

D = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]

= ( x2 + 5x - 6 )( x2 + 5x + 6 )

= ( x2 + 5x )2 - 36 ≥ -36 ∀ x

Dấu "=" xảy ra <=> x2 + 5x = 0

                        <=> x( x + 5 ) = 0

                        <=> x = 0 hoặc x = -5

=> MinD = -36 <=> x = 0 hoặc x = -5

11 tháng 10 2020

1) \(A=2x^2+6x=2\left(x^2+3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(2\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=-\frac{3}{2}\)

Vậy Min(A) = -9/4 khi x = -3/2

2) \(B=x^2-2x+y^2-4y+6\)

\(B=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(B=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy Min(B) = 1 khi x = 1 và y = 2

3) \(C=x^2-2xy+6y^2-12x+2y+45\)

\(C=\left(x^2-2xy+y^2\right)-12\left(x-y\right)+36+\left(5y^2-10y+5\right)+4\)

\(C=\left(x-y\right)^2-12\left(x-y\right)+36+5\left(y-1\right)^2+4\)

\(C=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-6\right)^2=0\\5\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)

Vậy Min(C) = 4 khi x = 7 và y = 1

4) \(D=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(D=\left(x^2+5x\right)^2-36\ge-36\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x^2+5x\right)^2=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy Min(D) = -36 khi x = 0 hoặc  x = -5

10 tháng 9 2019

1) 

a) \(2x^2-12x+18+2xy-6y\)

\(=2x^2-6x-6x+18+2xy-6y\)

\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)

\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)

\(=\left(x-3\right)\left(2y+2x-6\right)\)

\(=2\left(x-3\right)\left(y+x-3\right)\)

b) \(x^2+4x-4y^2+8y\)

\(=x^2+4x-4y^2+8y+2xy-2xy\)

\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)

\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)

\(=\left(2y+x\right)\left(-2y+x+4\right)\)

2)  \(5x^3-3x^2+10x-6=0\)

\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)

Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)

\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)

\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Bài làm

a) 2x2 - 12x + 18 + 2xy - 6y

= 2x2 - 6x - 6x + 18 + 2xy - 6y 

= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )

= 2x( y + x - 3 ) - 6( y + x - 3 )

= ( 2x - 6 ) ( y + x - 3 )

# Học tốt #