trong 1 hình vuông cạnh 5cm , có 126 điểm .Chứng minh rằng trong các điểm này tìm được 2 điểm mà khoảng cách giữa chứng không lớn hơn căn bậc 2 của 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta chia hình chữ nhật thành 10 hình có kích thước 2x3. Theo nguyên tắc Đrichle 11 điểm bổ vào 10 hình luôn tôn tại 1 hình có hai điểm có khoảng cách không lớn hơn \(\sqrt{2^2+3^2}=\sqrt{13}\)
b) Với n = 10 . thì ta chia thành 9 hình theo nguyên tắc Đrichle luôn tôn tai một hình có hai điểm có khoảng cách không lớn hơn \(\sqrt{13}\)nên n = 10 vẫn đúng
chia hình vuông thành 25 hình vuông nhỏ có cạnh bằng 1cm ( nghĩa là diện tích bằng 1cm^2)
Theo nguyên lí dirichlet do có 51 điểm và 25 hình vuông
nên tồn tại một hình vuông con chứa ít nhất 3 điểm
Nên 3 điểm đỏ taoh thành 1 tma giác có diện tích nhỏ hơn 1/2 diện tích hình vuông nhỏ là 0,5 cm^2
Vậy ta có điều phải chứng minh
Chắc chắn sẽ có 2 hay thậm chí nhiều điểm mà khoảng cách giữa mỗi cặp điểm đều không lớn hơn \(\sqrt{5}\)bởi vì đề cho 126 điểm chứ không nói là 126 điểm phân biệt nên có thể có 2 hay nhiều điểm trùng nhau (khoảng cách giữa chúng bằng \(0< \sqrt{5}\))