K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
16 tháng 2 2022
Chia tam giác đó thành 16 tam giác đều bằng nhau cạnh \(\dfrac{1}{4}\) Theo Dirichlet tồn tại 2 điểm cùng thuộc 1 tam giác và khoảng cách giữa chúng không lớn hơn \(\dfrac{1}{4}\)
17 tháng 4 2018
Giả sử tam giác đã cho là ABC . Gọi M,N,P là trung điểm của các cạnh BC,CA,AB và G là trọng tâm của tam giác . Lấy \(A_0,B_0,C_0,X,Y,Z,T,S,R\)lần lượt là các trung điểm của các đoạn thẳng GA,GB,GC,BM,CM,CN,AN,AP,BP . Tam giác ABC chia thành 12 phần = nhau
Theo nguyên lý Dirichlet , trong số 13 điểm đã cho tồn tại hai điểm cùng thuộc 1 phần . Do cạnh của tam giác ABC = 6cm nên \(GA_0=AA_0\)= \(GB_0=BB_0=CC_0=GC_0=\sqrt{3cm}\)