K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2021

a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(A=\frac{4}{\sqrt{x}+2}\)

b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)

=> 2cawn x + 4 = 12

=> 2.căn x = 8

=> căn x = 4

=> x = 16 (thỏa mãn)

c, có A = 4/ căn x + 2 và B  = 1/căn x - 2

=> A.B = 4/x - 4 

mà AB nguyên

=> 4 ⋮ x - 4

=> x - 4 thuộc Ư(4) 

=> x - 4 thuộc {-1;1;-2;2;-4;4}

=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4

=> x thuộc {3;5;2;6;8}

d, giống c thôi

a: \(P=\dfrac{x-\sqrt{x}-1-\sqrt{x}+1}{x-1}\cdot\dfrac{4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\cdot4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{4}{x-1}\)

Để P nguyên dương thì x-1 thuộc {1;4;2}

=>x thuộc {2;5;3}

b: x+y+z=0

=>x=-y-z; y=-x-z; z=-x-y

\(P=\dfrac{x^2}{y^2+z^2-\left(y+z\right)^2}+\dfrac{y^2}{z^2+x^2-\left(x+z\right)^2}+\dfrac{z^2}{x^2+y^2-\left(x+y\right)^2}\)

\(=\dfrac{x^2}{-2yz}+\dfrac{y^2}{-2xz}+\dfrac{z^2}{-2xy}\)

\(=\dfrac{x^3+y^3+z^3}{2xyz}\cdot\left(-1\right)\)

\(=-\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)

\(=-\dfrac{\left(-z\right)^3+z^3-3xy\cdot\left(-z\right)}{2xyz}=-\dfrac{3}{2}\)

9 tháng 3 2017

Ta có : A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=    \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)  =      1+\(\frac{4}{\sqrt{x}-3}\)                                                                                                                        Để A có giá trị nguyên thi \(\sqrt{x}-3\)là ước của 4                                                                                                                                           \(\sqrt{x}-3\)= +-1;+-2;+-4                                                                                                                                                                                      Nếu \(\sqrt{x}-3\)=1 suy ra x=16                                                                                                                                                                      Nếu\(\sqrt{x}-3\)=-1 suy ra x=4                                                                                                                                                                        Nếu\(\sqrt{x}-3\)= 2 suy ra  x=25                                                                                                                                                                      Nếu \(\sqrt{x}-3\)=-2 suy ra x=1                                                                                                                                                                        Nếu \(\sqrt{x}-3\)=4 suy ra x=49                                                                                                                                                                      Neu  \(\sqrt{x}-3\)=-4 suy ra \(\sqrt{x}\)=-1 (loại)                                                                                                                    Vậy x=.......                                                                                                                                                                                                               Bạn thử cách này xem sao nhé mình cũng chưa thử cách này bao giờ

28 tháng 7 2020

\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne\pm2\end{cases}}\)

\(P=\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{2}{\sqrt{x}+2}-\frac{4\sqrt{x}}{x-4}\)

\(\Leftrightarrow P=\frac{x+2\sqrt{x}-2\sqrt{x}+4-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Leftrightarrow P=\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Leftrightarrow P=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

Để P là số nguyên \(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+2}\)là số nguyên

\(\Leftrightarrow\sqrt{x}-2⋮\sqrt{x}+2\)

\(\Leftrightarrow4⋮\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}+2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{-3;-1;-4;0;-6;2\right\}\)

Loại những giá trị \(\sqrt{x}\in\left\{-3;-1;-4;-6;2\right\}\)

\(\Leftrightarrow\sqrt{x}=0\)

\(\Leftrightarrow x=0\)

Vậy để P là số nguyên \(\Leftrightarrow x=0\)

31 tháng 7 2020

Cho mình sửa 1 chút nhé :

\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 8:

\(M=1+\frac{4}{\sqrt{x}+1}\)

Để $M$ nguyên thì $\frac{4}{\sqrt{x}+1}$ nguyên 

Đặt $\frac{4}{\sqrt{x}+1}=t$ với $t$ là số nguyên dương 

$\Rightarrow \sqrt{x}+1=\frac{4}{t}$

$\sqrt{x}=\frac{4}{t}-1=\frac{4-t}{t}\geq 0$

$\Rightarrow 4-t\geq 0\Rightarrow t\leq 4$

Mà $t$ nguyên dương suy ra $t=1;2;3;4$

Kéo theo $x=9; 1; \frac{1}{9}; 0$

Kết hợp đkxđ nên $x=0; \frac{1}{9};9$

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 9:

$P=1+\frac{5}{\sqrt{x}+2}$

Để $P$ nguyên thì $\frac{5}{\sqrt{x}+2}$ nguyên 

Đặt $\frac{5}{\sqrt{x}+2}=t$ với $t\in\mathbb{Z}^+$

$\Leftrightarrow \sqrt{x}+2=\frac{5}{t}$

$\Leftrightarrow \sqrt{x}=\frac{5-2t}{t}\geq 0$

Với $t>0\Rightarrow 5-2t\geq 0$

$\Leftrightarrow t\leq \frac{5}{2}$

Vì $t$ nguyên dương suy ra $t=1;2$

$\Rightarrow x=9; \frac{1}{4}$ (thỏa đkxđ)

18 tháng 1 2018

Ta có : \(B=\frac{\sqrt{x}-2+5}{\sqrt{x}-2}=1+\frac{5}{\sqrt{x}-2}\)

Mà B nguyên nên \(\frac{5}{\sqrt{x}-2}\in Z\)hay \(\left(\sqrt{x}-2\right)\inƯ\left(5\right)\)

\(\sqrt{x}-2\)1-15-5
\(\sqrt{x}\)317-3
 \(x\)9149 \(\varnothing\)

Vậy \(x\in\left(1;9;49\right)\)

18 tháng 1 2018

\(B=\frac{\sqrt{x}+3}{\sqrt{x}-2}\)  \(ĐKXĐ:x\ne4;x\ge0\)

\(B=\frac{\sqrt{x}-2+5}{\sqrt{x}-2}\)

\(B=1+\frac{5}{\sqrt{x}-2}\)

để \(B\in Z\)thì \(x\in Z\)

mà \(1\in Z\forall R\) nên \(\frac{5}{\sqrt{x}-2}\in Z\)

\(\Leftrightarrow\sqrt{x}-2\inƯ\left(5\right)\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{\pm1;\pm5\right\}\)

mà \(x\ge0\) nên \(\sqrt{x}-2\in\left\{1;5\right\}\)

+  \(\sqrt{x}-2=1\)  \(\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)  (thỏa mãn )

\(\sqrt{x}-2=5\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\) ( thỏa mãn)

vậy \(x\in\left\{9;49\right\}\) thì \(B\in Z\)

27 tháng 3 2019

A= căn x-3+4/ căn x-3

A=1+4 / căn x-3

để A thuộc Z thì 4 chia hết cho x-3

hay x-3 là ước của 4

x-3 thuộc (1;-1;2;-2;4;-4)

x thuộc (4;2;5;1;7;-1)

vậy ....

27 tháng 3 2019

mình cần rất gấp