K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

Cách 1:

BĐT \(\Leftrightarrow7\left(a+b+c\right)\left(ab+bc+ca\right)\le2\left(a+b+c\right)^3+9abc\)

\(VP-VT=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)

Ta có đpcm. Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Cách 2:

Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\) thì 3u = 1. Chú ý \(\frac{\left(a+b+c\right)^2}{3}\ge\left(ab+bc+ca\right)\Rightarrow3u^2\ge3v^2\Rightarrow u^2\ge v^2\)

Cần chứng minh: \(21v^2\le2+9w^3\Leftrightarrow63uv^2\le54u^3+9w^3\)

\(RHS-LHS=9\left(w^3+3u^3-4uv^2\right)+27u\left(u^2-v^2\right)\ge0\)

Đúng theo BĐT Schur bậc 3.

P/s: Em không chắc ở cách 2.

15 tháng 4 2018

Đồng bậc : \(BDT\Leftrightarrow9abc+2\left(a+b+c\right)^3\ge7\left(ab+bc+ca\right)\left(a+b+c\right)\)

\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(a+c\right)\left(c-a\right)^2\ge0\)( đúng)\(\Rightarrow DPcm\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

** Bài này chỉ đúng khi $a,b,c$ không âm thôi bạn nhé.

Lời giải:
Theo BĐT Schur:

$a^3+b^3+c^3+3abc\geq ab(a+b)+bc(b+c)+ca(c+a)$

$\Rightarrow a^3+b^3+c^3+6abc\geq (a+b+c)(ab+bc+ac)$

$\Leftrightarrow a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)+6abc\geq 4(a+b+c)(ab+bc+ac)$
$\Leftrightarrow a^3+b^3+c^3+3[(a+b)(b+c)(c+a)+abc]+6abc\geq 4(a+b+c)(ab+bc+ac)$

$\Leftrightarrow a^3+b^3+c^3+3(a+b)(b+c)(c+a)+9abc\geq 4(a+b+c)(ab+bc+ac)$

$\Leftrightarrow (a+b+c)^3+9abc\geq 4(a+b+c)(ab+bc+ac)$

Dấu "=" xảy ra khi $a=b=c$

10 tháng 4 2021

Một bài bất đẳng thức khá đặc trưng với phương pháp đổi biến p,q,r. Mình sẽ phiên từ lời giải đổi biến sang biến đổi tương đương nhé. 
\(ab+bc+ca\le\dfrac{2}{7}+\dfrac{9abc}{7}\\ \Leftrightarrow7\left(ab+bc+ca\right)\left(a+b+c\right)\le2\left(a+b+c\right)^3+9abc\\ \Leftrightarrow7\left(a^2b+a^2c+b^2c+b^2a+c^2a+c^2b+3abc\right)\le2\left(a^3+b^3+c^3+3a^2b+3a^2c+3b^2c+3b^2a+3c^2a+3c^2b+6abc\right)+9abc\\ \Leftrightarrow2a^3+2b^3+2c^3\ge a^2b+a^2c+b^2c+b^2a+c^2a+c^2b\left(1\right)\)Thật vậy, áp dụng bất đẳng thức Cosi cho cặp 3 số dương ta có:

\(a^3+a^3+b^3\ge3a^2b;b^3+b^3+c^3\ge3b^2c;c^3+c^3+a^3\ge3c^2a\\ \Rightarrow a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)

Tương tự : \(a^3+b^3+c^3\ge a^2c+b^2a+c^2b\)

Suy ra (1) được chứng minh

Dấu bằng xảy ra khi và chỉ khi a=b=c=1/3 

---- Tick cho mình với -----