Bài 3: Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. a) Tính độ dài đoạn BC. b) Vẽ AH ⊥ BC tại H. Trên HC lấy D sao cho HD = HB. Chứng minh: AB = AD. c) Trên tia đối của tia HA lấy điểm E sao cho EH = AH. Chứng minh: ED ⊥ AC. d) Chứng minh BD < AE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trên tia đối của AB hay sao, trên cạnh AB biết vẽ về phía nào
Câu hỏi của nguyen anh ngoc ly - Toán lớp 7 - Học toán với OnlineMath
a. Tính số đo góc HAB
Trong tam giác HAB vuông tại H, ta có
- góc HAB = 180 độ - góc AHB - góc HBA = 180 độ - 90độ - 60độ = 30 độ (đpcm)
b. Trên cạnh AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI=tam giác ADI. Từ đó suy ra AI vuông góc với HD
Xét tam giác DIA và tam giác HIA, có
- DI = HI (I là trung điểm DH)
- cạnh IA chung
- AD = AH (giả thiết)
=> tam giác DIA = tam giác HIA (cạnh - cạnh - cạnh) (đpcm)
Ta có AD = AH => tam giác ADH cân tại A
mà I là trung điểm DH
=> AI là trung trực, trung tuyến, phân giác của tam giác cân ADH
=> AI vuông góc HD(đpcm)
c. Tia AI cat cạnh HC tại điểm K. Chứng minh AB // KD
Xét tam giác ADK và tam giác AHK, có
- AD = AH (giả thiết)
- góc DAK = góc HAK (do AI là phân giác của tam giác cân DAH; mà A,I,K thẳng hàng => AK là phân giác góc DAH)
- cạnh AK chung
=> tam giác ADK = tam giác AHK
=> góc ADK = góc AHK
mà AHK = 90 độ
=> góc ADK = 90 độ
Ta có góc ADK = 90 độ
=> KD vuông góc AC
mà AB cũng vuông góc AC (do tam giác vuông tại A)
=> AB // KD
a: \(\widehat{B}=\widehat{C}=\dfrac{180^0-70^0}{2}=55^0\)
b: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
c: Xét ΔAMN có
AB/BM=AC/CN
nên MN//BC
d: Ta có: ΔAMN cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
=>AI⊥MN
mà MN//BC
nên AI⊥BC
mà AD⊥BC
và AD,AI có điểm chung là A
nên D,A,I thẳng hàng
e: Xét ΔBEC có
D là trung điểm của BC
DA//BE
Do đó: A là trung điểm của EC
a) Ta có AH = AD và AB \(\perp\)DH nên AB là đường trung trực của đoạn thẳng DH
=> BD = BH => \(\Delta\)DBH cân
Vậy \(\Delta\)DBH cân (đpcm)
b) D là trung điểm của AC nên AD = \(\frac{1}{2}\)AC
=> AC = 2AD = 2AB = 2.5 = 10 (cm) => AB = 5 (cm)
\(\Delta\)ABC vuông tại A nên AB2 + AC2 = BC2 (theo định lý Pythagoras)
Thay số: 52 + 102 = BC2 => BC2 =125 => BC = \(\sqrt{125}\)
Vậy BC = \(5\sqrt{5}\)cm
c) Cung tròn tâm D có bán kính bằng BC nên BC = DE ( DE là bán kính của đường tròn tâm D)
Từ giả thiết suy ra CD = DA = AH => AC = DH
Xét \(\Delta\)ABC và \(\Delta\)HED có:
AC = HD (cmt)
BC = ED (cmt)
Do đó \(\Delta\)ABC = \(\Delta\)HED ( 2cgv)
=> AB = HE (hai cạnh tương ứng)
Mà AB = AD (cùng bằng nửa AC)
=> AD = HE (đpcm)
d) Dễ thấy \(\Delta\)ABD và \(\Delta\)ABH vuông cân nên ^DBA = ^ABH = 450
=> ^DBH = 900
Dễ chứng minh: ^EHB = ^CDB = 1350
Xét \(\Delta\)CDB và \(\Delta\)EHB có:
CD = HE (cùng bằng AD)
^EHB = ^CDB (cmt)
BD = BH (câu a)
Do đó \(\Delta\)CDB = \(\Delta\)EHB (c.g.c)
=> BC = BE (hai cạnh tương ứng) (1)
và ^EBH = ^CBD
=> ^DBH = ^DBE + ^EBH = ^DBE + ^CBD = ^EBC = 900 (2)
Từ (1) và (2) suy ra BEC vuông cân tại B (đpcm)