tính giá trị biểu thức: A = 1+2+3+4...+2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)
\(A=1+\left(1+\frac{2017}{2}\right)+\left(1+\frac{2016}{3}\right)+...+\left(1+\frac{1}{2018}\right)\)
\(A=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)
\(A=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)
Ta có: \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)
Ta có :\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2014.2016}\right)\)
\(=\left(\frac{1.3+1}{1.3}\right)\left(\frac{2.4+1}{2.4}\right)\left(\frac{1+3.5}{3.5}\right)...\left(\frac{1+2014.2016}{2014.2016}\right)=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{4060225}{2014.2016}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2015.2015}{2014.2016}=\frac{\left(2.3.4...2015\right).\left(2.3.4...2015\right)}{\left(1.2.3...2016\right).\left(3.4.5...2014\right)}=\frac{2015.2}{2016}=\frac{2015}{1008}\)
\(B=\)\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)..\left(1-\frac{1}{2016}\right)\left(1-\frac{1}{2017}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}.\frac{2016}{2017}\)
\(\Rightarrow B=\frac{1}{2017}\)
Ta có:\(B=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times............\times\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times............\times\frac{2016}{2017}\)
\(=\frac{1\times2\times..........\times2016}{2\times3\times...........\times2017}=\frac{1}{2017}\)
A=\(\frac{2016\left(2016+1\right)}{2}=2033136\)
Số các số hạng là:
(2016 - 1)/1 +1 = 2016 số hạng
2.S = (2016 + 1) x 2016
2.S = 4066272
S = 4066272 : 2
S = 2033136