Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)
\(A=1+\left(1+\frac{2017}{2}\right)+\left(1+\frac{2016}{3}\right)+...+\left(1+\frac{1}{2018}\right)\)
\(A=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)
\(A=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)
Ta có: \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)
Ta có :\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2014.2016}\right)\)
\(=\left(\frac{1.3+1}{1.3}\right)\left(\frac{2.4+1}{2.4}\right)\left(\frac{1+3.5}{3.5}\right)...\left(\frac{1+2014.2016}{2014.2016}\right)=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{4060225}{2014.2016}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2015.2015}{2014.2016}=\frac{\left(2.3.4...2015\right).\left(2.3.4...2015\right)}{\left(1.2.3...2016\right).\left(3.4.5...2014\right)}=\frac{2015.2}{2016}=\frac{2015}{1008}\)
2.Tính giá trị của biểu thức
( 1/2 : 0,5 - 1/4 : 0,25 + 1/8 : 0,125 - 1/10 :0,1 ) : ( 1+2+3+...+2016)
\(\left(\frac{1}{2}:0,5-\frac{1}{4}:0,25+\frac{1}{8}:0,125-\frac{1}{10}:0,1\right):\left(1+2+3+...+2016\right)\\ =\left(1-1+1-1\right):\left(1+2+3+...+2016\right)\\ =0:\left(1+2+3+...+2016\right)=0\)
https://olm.vn/hoi-dap/detail/104380939254.html?pos=228315034049
bạn coi thử nha
Ta có:
A = -1 – 2 + 3 + 4 – 5 – 6 + 7 + 8 – 9 – 10 + 11 + 12 - ... – 2013 – 2014 + 2015 + 2016
A = (0 – 1 – 2 + 3) + (4 – 5 – 6 + 7) + ... + (2012- 2013 – 2014 + 2015) + 2016
A = 0 + 0 + ... + 0
A = 2016
Vậy A = 2016
#Mạt Mạt#
A=\(\frac{2016\left(2016+1\right)}{2}=2033136\)
Số các số hạng là:
(2016 - 1)/1 +1 = 2016 số hạng
2.S = (2016 + 1) x 2016
2.S = 4066272
S = 4066272 : 2
S = 2033136