Cho 1/a + 1/b + 1/c = 0. Tính P=ab / c^2 + bc / a^2 + ac / b^2
Các bạn giúp mik nhé!!! ^_^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho ab+bc+ac =1 tính P= (a+b+c-abc)^2/(a^2+1)(b^2+1)(c^2+1)
Ai giúp mik với mik đang cần gấp
help me
Lời giải:
Có:
$(a^2+1)(b^2+1)(c^2+1)=(a^2+ab+bc+ac)(b^2+ab+bc+ac)(c^2+ab+bc+ac)$
$=(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)=[(a+b)(b+c)(c+a)]^2$
Và:
$(a+b+c-abc)^2=[(a+b+c)(ab+bc+ac)-abc]^2$
$=[ab(a+b)+bc(b+c)+ca(c+a)+2abc]^2$
$=[ab(a+b+c)+bc(b+c+a)+ca(c+a)]^2$
$=[(a+b+c)(ab+bc)+ca(c+a)]^2=[b(a+b+c)(a+c)+ac(c+a)]^2$
$=[(c+a)(ab+b^2+bc+ac)]^2=[(c+a)(b+a)(b+c)]^2$
Do đó: $P=\frac{[(a+b)(b+c)(c+a)]^2}{[(a+b)(b+c)(c+a)]^2}=1$
=>1/2.2/3.3/4 = ab.bc.ca
<=> 1/4 = (abc)^2
=> abc = 1/2 hoặc abc = -12
=> a=4/3 ; b = 2/3 ; c=1 hoặc a=-4/3 ; b=-2/3 ; c=-1
k mk nha
Ta có: ab.bc.ac = \(\frac{1}{2}\). \(\frac{2}{3}\).\(\frac{3}{4}\)= \(\frac{1}{4}\)
\(\Leftrightarrow\)(abc)2 =\(\frac{1}{4}\)
\(\Leftrightarrow\)abc = \(\pm\) \(\sqrt{\frac{1}{4}}\)= \(\pm\)\(\frac{1}{2}\)
\(\Rightarrow\)\(\hept{\begin{cases}a=\pm\frac{3}{4}\\b=\pm\frac{2}{3}\\c=\pm1\end{cases}}\)
Ta có:
\(a+b+c-abc=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+c\left(a+b\right)\right)-abc\)
\(=\left(a+b\right)ab+\left(a+b\right)^2c+abc+c^2\left(a+b\right)-abc\)
\(=\left(a+b\right)\left(ab+c^2+c\left(a+b\right)\right)\)
\(=\left(a+b\right)\left(ab+ac+c^2+bc\right)\)
\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
Đồng thời:
\(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự:
\(b^2+1=\left(a+b\right)\left(b+c\right)\)
\(c^2+1=\left(a+c\right)\left(b+c\right)\)
Từ đó:
\(P=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}=1\)
Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
$\Rightarrow ab+bc+ac=0$
Đặt $ab=x, bc=y, ac=z$ thì $x+y+z=0$
Có:
$M=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}$
$=\frac{b^3c^3+a^3c^3+a^3b^3}{(abc)^2}$
$=\frac{x^3+y^3+z^3}{xyz}=\frac{(x+y)^3-3xy(x+y)+z^3}{xyz}$
$=\frac{(-z)^3-3xy(-z)+z^3}{xyz}$
$+\frac{-z^3+3xyz+z^3}{xyz}=\frac{3xyz}{xyz}=3$
Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath
Bạn tham khảo nhé!
Sử dụng điều kiện biến đổi thành 3 loại
-(a+b)=ab/c;-(b+c)=bc/a;-(c+a)=ac/b
Rồi thay vào từng vào P
Ta có:
-(a+b)/c-(b+c)/a-(a+c)/b
=-a/c - b/c - b/a - c/a - a/b - c/b
=-a(1/c+1/b)-b(1/c+1/a)-c(1/a+1/b)
Sử dụng đk ta có
1/c+1/b=-1/a; 1/c+1/a=-1/b;
1/a+1/b=-1/c
Thay tiếp=> P=3