K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB vuông tại M và ΔAMC vuông tại M có

AB=AC

AM chung

Do đó: ΔAMB=ΔAMC

=>MB=MC

=>M là trung điểm của BC

b: Ta có: ME=MB

\(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)

Do đó: \(EM=\dfrac{1}{2}BC\)

Xét ΔEBC có

EM là đường trung tuyến

\(EM=\dfrac{1}{2}BC\)

Do đó: ΔEBC vuông tại E

=>BE\(\perp\)EC

 

 

a: Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh BC

nên H là trung điểm của BC

Xét ΔABC có 

H là trung điểm của BC

N là trung điểm của AC
Do đó: HN là đường trung bình của ΔABC

Suy ra: HN//AB và \(HN=\dfrac{AB}{2}\)

hay HN//AM và HN=AM

Xét tứ giác AMHN có 

HN//AM

HN=AM

Do đó: AMHN là hình bình hành

mà AM=AN

nên AMHN là hình thoi

a)bn c/m hbh có  1 góc vuông là hcn

b) c/m EACH là hbh (EA//HC và EA=HC)

mà N là trung điểm AH nên N cx là trung điểm EC

c)ta có NM là đường trung bình tam giác BHA nên NM=HC/2(1)

mà BH=HC (AH là đc nên cx là đtt trong tam giác cân)

=> BH=BC/2(2)

từ (1) và (2)=>NM=BC/4=12/4=3cm

ta có NM vuông góc AH (NM//BC, AH vuông góc BC)

SAHM=1/2 x 8x3=12 cm2

d)ta có QC=QK,BH=HC

=>QH//BK

lại có KQ=QC,KI=IH

=>QI là đtb t.g KHC

=>QI//HC

mà HC vuoong góc HF

nên QI cx vuông góc HF

tam giác HQF có đường cao QI,HK cùng cắt tại I

nên I là trực tâm  

=>IF vuông góc HQ

mà HQ//BK 

=>IF vuông góc BK