K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB vuông tại M và ΔAMC vuông tại M có

AB=AC

AM chung

Do đó: ΔAMB=ΔAMC

=>MB=MC

=>M là trung điểm của BC

b: Ta có: ME=MB

\(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)

Do đó: \(EM=\dfrac{1}{2}BC\)

Xét ΔEBC có

EM là đường trung tuyến

\(EM=\dfrac{1}{2}BC\)

Do đó: ΔEBC vuông tại E

=>BE\(\perp\)EC

 

 

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

BA=BE

=>ΔBAD=ΔBED

=>góc ABD=góc EBD

=>BD là phân giác của góc ABE

b: BA=BE

DA=DE

=>BD là trung trực của AE

21 tháng 5 2022

refer

a)

ta có: AC=EC

ECA=60

=> tam giác AEC đều

b)

ta có tam giấcEC đều => EA=AC=EC

ABC=90-60=30

BAE=90-60=30

=> tam giác ABE cân tại E => BE=EA mà EA=AC=> BE=AC

c)

theo câu b, ta có tam giác ABE cân tại E=> __BE=EA

                                                                |__EBA=EAB

xét 2 tam giác vuông BEF và AEF cso:

EA=EB(cmt)

EBA=EAB(cmt)

=> tam giác BEF AEF(CH-GN)

=> FB=FA=> F là trung điểm của AB

d) ta có: tính chất trong 1 tam giác vuông cạnh đối diện góc 30 độ = nửa cạnh huyền

=> AC=1/2 BC=1/2 x6=3(cm)

AB2=BC2−AC2=62−32=36−9=25(cm)

29 tháng 4 2016

Có sai đề không bạn? Cái chỗ lấy E thuộc BC sao cho EC=AC ấy? Vì AC=BC rồi thì để EC=AC thì B và E trùng nhau và câu b sẽ vô lí

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

4 tháng 11 2018

=1 nha

4 tháng 11 2018

B A C E D M

A)

 xét tam giác ABC  và tam giác ADC

 có : góc ADC =   góc ABC 

AB=AD (  tia đối )

AC chung 

=> tam giác ABC = tam giác ADC (c-g-c)

=> góc ACB =  góc ACD

=> AC LÀ  phân giác góc BCD

b)

ý 2 câu b : cm DC//AE

 có tam giác ABC   vuông tại A 

mà AM   là đường trung tuyến

=> AM=MC

=>    tam giác AMC  cân tại M

=> góc MAC = góc MCA ( tam giác cân )

mà góc MCA = góc ACD ( phân giác )

=> MAC = góc ACD

mà 2 góc này vị trí so le trong 

=> DC//AE

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Ta có: AD=AE(cmt)

nên A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MD=ME(M là trung điểm của DE)

nên M nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của DE

\(\Leftrightarrow AM\perp DE\)

hay \(AM\perp BC\)(đpcm)