( x + 2y )^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{x}{x+2y}-\dfrac{x+2y}{2y}\right)\left(\dfrac{x}{x-2y}-1+\dfrac{8y^3}{8y^3-x^3}\right)=\dfrac{2xy-\left(x+2y\right)^2}{2y\left(x+2y\right)}\left(\dfrac{2y}{x-2y}+\dfrac{8y^3}{\left(2y-x\right)\left(4y^2+2yx+x^2\right)}\right)=\dfrac{-\left(x^2+2xy+4y^2\right)}{2y\left(x+2y\right)}\cdot\dfrac{2y\left(4y^2+2yx+x^2\right)-8y^3}{\left(x-2y\right)\left(x^2+2xy+4y^2\right)}=\dfrac{-\left(x^2+2xy+4y^2\right)2y\left(4y^2+2xy+x^2-4y^2\right)}{2y\left(x+2y\right)\left(x-2y\right)\left(x^2+2x+4y^2\right)}=\dfrac{-\left(x^2+2xy\right)}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{x}{2y-x}\)
ta có 4 x 3 y 2 – 8 x 2 y 3 = 4 x 2 y 2 . x – 4 x 2 y 2 . 2 y = 4 x 2 y 2 ( x – 2 y )
Vậy 4x3y2 – 8x2y3 = 4x2y2(x – 2y)
Đáp án cần chọn là: C
bấm đúng cho mik đi
\(A=x^2y^3\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)=\dfrac{67}{60}x^2y^3\)
\(B=x^6y^3\cdot\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)
\(A+B=\dfrac{67}{60}x^2y^3+\dfrac{1}{4}x^8y^7z^2\)
\(A-B=\dfrac{67}{60}x^2y^3-\dfrac{1}{4}x^8y^7z^2\)
A=x2y3(15+23−34+1)=6760x2y3A=x2y3(15+23−34+1)=6760x2y3
B=x6y3⋅14x2y4z2=14x8y7z2B=x6y3⋅14x2y4z2=14x8y7z2
A+B=6760x2y3+14x8y7z2A+B=6760x2y3+14x8y7z2
A−B=6760x2y3−14x8y7z2
\(A=\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3=\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)x^2y^3=\dfrac{67}{60}x^2y^3\\ B=\left(x^2y\right)^3\left(\dfrac{1}{2}xy^2z\right)^2=x^6y^3.\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)
\(3x^2y^3-x^2y-M=x^2y^3+x^2y\\ \Rightarrow M=3x^2y^3-x^2y-x^2y^3-x^2y\\ \Rightarrow M=2x^2y^3-2x^2y\)
\(\Leftrightarrow M=3x^2y^3-x^2y-x^2y^3-x^2y=2x^2y^3-2x^2y\)
\(A=\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)x^2y^3=\dfrac{67}{60}x^2y^3\)
bth B đâu bạn ?
Đặt \(x+2y+3z=A\)
Áp dụng tính chất của dãy tỉ số bằng nhau có :
\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}=\frac{x+2y+2y+3z+3z+x}{x+2y+2y+3z+3z+x-3-3-3}\)
\(\Rightarrow A=\frac{2A}{2A-9}\)
\(\Rightarrow\frac{2}{2A-9}=1\)
\(\Rightarrow2A-9=2\)
\(\Rightarrow A=\frac{11}{2}\)
Cũng áp dụng tính chất của dãy tỉ số bằng nhau và có :
- \(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)
\(=\frac{\left(x+2y\right)+\left(2y+3z\right)-\left(3z+x\right)}{\left(2y+3z-3\right)+\left(3z+x-3\right)-\left(x+2y-3\right)}=\frac{4y}{4y-3}=\frac{11}{2}\)
\(\Rightarrow2.\left(4y\right)=11.\left(4y-3\right)\)
\(\Rightarrow8y=44y-33\)
\(\Rightarrow36y=33\)
\(\Rightarrow y=\frac{11}{12}\)
- \(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)
\(=\frac{\left(x+2y\right)-\left(2y+3z\right)+\left(3z+x\right)}{\left(2y+3z-3\right)-\left(3z+x-3\right)+\left(x+2y-3\right)}=\frac{2x}{2x-3}=\frac{11}{2}\)
\(\Rightarrow2.\left(2x\right)=11\left(2x-3\right)\)
\(\Rightarrow4x=22x-33\)
\(\Rightarrow18x=33\)
\(\Rightarrow x=\frac{33}{18}=\frac{11}{6}\)
\(\Rightarrow3z=A-x-2y=\frac{11}{2}-\frac{11}{6}-\frac{2.11}{12}=\frac{11}{6}\)
\(\Rightarrow z=\frac{11}{6}:3=\frac{11}{18}\)
Vậy ...
Cho mình bổ sung : \(TH2:A=0\)
\(\Rightarrow2x=4y=6z=0\)
\(\Rightarrow x=y=z=0\)
Vậy ....
(x + 2y)3 = x3 + 3x22y + 3x(2y)2 + (2y)3
= x3 + 6x2y + 12xy2 + 8y3
( x + 2y )\(^3\)= x^3 + 3.x^2.2y+3.x.2y^2+2y^3
=x^3+6x^2y+6xy^2+8y^3
Nhớ k mk nhe!!!