K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

thiếu đề

2 tháng 7 2016

Thiếu đề nha bn

16 tháng 5 2016

Đặt A=1/3+1/6+1/10+...+2/x*(x+1)

        1/2A=1/3*2+1/6*2+1/10*2+...+2/2*x*(x+1)

         1/2A=1/6+1/12+1/20+...+1/x*(x+1)

          1/2A=1/2*3+1/3*4+1/4*5+...+1/x*(x+1)

           1/2A=1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/(x+1)

           1/2A=1/2-1/x+1

           A=(1/2-1/x+1):1/2

          A=1-2/x+1

Ta có A=1999/2001

Hay 1-2/x+1=1999/2001

           2/x+1=1-1999/2001

          2/x+1=2/2001

=>x+1=2001

=>x=2000

16 tháng 5 2016

Cho A = 1/3+1/6+1/10+...+2/x(x+1)

    1/2A= 1/3.2+1/6.2+1/10.2+...+2/x(x+1)2

    1/2A= 1/6+1/12+1/20+...+1/x(x+1)

    1/2A= 1/2.3+1/3.4+1/4.5+...+1/x(x+1)

    1/2A= 1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1

    1/2A= 1/2-1/x+1

    A      = (1/2-1/x+1)/1/2

    A      = 1-2/x+1

Mà A=1999/2001

=> 1-2/x+1= 1999/2001

         2/x+1= 1-1999/2001

         2/x+1= 2/2001

     =>x+1=2001

     =>x     = 2000

 

19 tháng 4 2017

\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2005}\)

\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)

\(2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)

\(2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)

\(=>2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4008}{2005}\)

\(2.\left(1-\frac{1}{x+1}\right)=\frac{4008}{2005}\)

=> \(1-\frac{1}{x+1}=\frac{4008}{2005}:2=\frac{2004}{2005}\)

\(\frac{1}{x+1}=1-\frac{2004}{2005}=\frac{1}{2005}\)

=>x+1=2005

=>x=2004

28 tháng 4 2017

1/3 + 1/6 + 1/10 +...+ 2/x(x+1) = 2014/2015

24 tháng 4 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}\div2\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}\)

\(\Rightarrow\frac{1}{x+1}=\frac{2}{4018}=\frac{1}{2009}\)

\(\Rightarrow x+1=2009\)

\(\Rightarrow x=2008\)

24 tháng 4 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

=>\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2007}{4018}\)(nhân cả hai vế với \(\frac{1}{2}\))

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)\(\frac{2007}{4018}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\frac{1}{x+1}\)=\(\frac{1}{2}-\frac{2007}{4018}\)

\(\frac{1}{x+1}=\frac{1}{2009}\)

x+1=2009

x=2009-1=2008

Vậy x bằng 2008

8 tháng 4 2018

Ta có: 1/3+1/6+1/10+...+2/x*(x+1)

=2/6+2/12+2/20+...+2/x*(x+1)

=2/2*3+2/3*4+2/4*5+...+2/x*(x+1)

=2*(1/2*3+1/3*4+1/4*5+...+1/x*(x+1))

=2*(1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)

=2*(1/2-1/x+1)=2000/2002

=>1/2-1/x+1=2000/2002:2

=>1/2-1/x+1=500/1001

=>1/x+1=1/2-500/1001

=>1/x+1=1/2002

=>x+1=2002

=>x=2002-1

=>x=2001 thuộc N

Vậy x=2001

*Mình ko biết ấn dấu phân số với dấu nhân ở đâu, bạn thông cảm nhé!

8 tháng 4 2018

uk mình cảm ơn bạn rất nhiều 

5 tháng 5 2016

1/3 + 1/6 + 1/10 + .......+2/x(x + 1) =  2015/2017

=> 2/2.3 +2/3.4 + 2/4.5 +........+ 2/x(x+1) =2015/2017

=> 2. [1/2.3 + 1/3.4 +1/4.5+....+1/x(x+1) ] = 2015/2017

=> 2. [ 1/2+ (-1/3 + 1/3) + (-1 /4 +1/4)+ -1/5 +.......+ 1/x + -1/x+1]

=> (1/2 + -1/x+1) .2 =2015/2017

=> 1/2 + -1/x+1 = 2015/2017 :2 = 2015/2017 . 1/2 =2015/4034.

=>  -1/x+1 = 2015/4034 -1/2 = 2015/4034 -2017/4034 = -1/2017

=> -1/x+1 = -1/2017

=>x+1=2017

=> x= 2016

8 tháng 5 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x-1\right)}=\)\(\frac{2017}{2019}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x-1\right)}=\frac{2017}{2019}\)

\(2\left[\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right]=\frac{2017}{2019}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\)\(\frac{2017}{2019}\)

\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2017}{2019}:2\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2017}{4038}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2017}{4038}\)

\(\frac{1}{x+1}=\frac{1}{2019}\)

x + 1 =2019

     x  = 2019-1 =2018

                       Vậy x = 2018

8 tháng 5 2018

   \(2\left(\frac{1}{3}.\frac{1}{2}+\frac{1}{6}.\frac{1}{2}+\frac{1}{10}.\frac{1}{2}+....+\frac{2}{x\left(x+1\right)}.\frac{1}{2}\right)=\frac{2017}{2019}\)

=>\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)

=>\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}\right)\)\(=\frac{2017}{2019}\)

=>\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

=> \(2[\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+....+\left(\frac{1}{x}-\frac{1}{x}\right)-\frac{1}{x+1}]=\frac{2017}{2019}\)

=>\(2\left(\frac{1}{2}+0+0+....+0-\frac{1}{x-1}\right)=\frac{2017}{2019}\)

=>\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

=>\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{4038}\)

=>\(\frac{1}{x+1}=\frac{1}{2019}\)

=> x+1=2019

=>x=2018

18 tháng 4 2019

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Em tham khảo nhé!

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

=>\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}:2=\frac{2007}{4018}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}=\frac{2009}{4018}-\frac{2007}{4018}\)

=> \(\frac{1}{x+1}=\frac{2}{4018}=\frac{1}{2009}\)

=> \(1\cdot2009=1\left(x+1\right)\)

=> \(x+1=2009\Rightarrow x=2009-1=2008\)

Vậy x = 2008

Chúc bn hk tốt !

25 tháng 5 2016

Đặt: A= 1/3 +1/6+1/10+…+2/x(x+1)
A x 1/2 = 1/2.3 + 1/3.4 + 1/4.5 +…+1/x(x+1)
A x1/2 = 1/2-1/3+1/3-1/4+1/4-1/5+…..+1/x-1/(x+1)
A x 1/2 = 1/2 – 1/(x+1)
A = (1/2 -1/x+1) : 1/2
A = 1 – 2/(x+1)
Như vậy ta có: 1-2/(x+1) = 1999/2001
Hay: 2/(x+1) = 1-1999/2001
2/(x+1) = 2/2001
Vậy x = 2000

 Tích tớ nha!! Cáchgiải chính xác 100%

25 tháng 5 2016

Ta có: