Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{2001}{2003}\)
\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}\right)=\frac{1}{2}\cdot\frac{2001}{2003}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2003}\)
\(\Rightarrow x+1=2003\)
\(x=2002\)
Vậy x = 2002
Ta có :
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+1-\frac{2}{x+1}=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=2-\frac{2003}{2005}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=\frac{2007}{2005}\)
\(\Leftrightarrow\)\(x+1=2:\frac{2007}{2005}\)
\(\Leftrightarrow\)\(x+1=\frac{4010}{2007}\)
\(\Leftrightarrow\)\(x=\frac{4010}{2007}-1\)
\(\Leftrightarrow\)\(x=\frac{2003}{2007}\)
Vậy \(x=\frac{2003}{2007}\)
Chúc bạn học tốt ~
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4010}\)
\(\Leftrightarrow\frac{x+1-2}{2\left(x+1\right)}=\frac{2003}{4010}\)
\(\Leftrightarrow2003.2\left(x+1\right)=4010\left(x-1\right)\)
\(\Leftrightarrow4006x+4006=4010x-4010\)
\(\Leftrightarrow-4x=-8016\)
\(\Leftrightarrow x=2004\)
Vậy x = 2004
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2003}{2005}\)
\(\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}\right).\frac{1}{2}=\frac{2003}{2005}.\frac{1}{2}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{2}{x.\left(x+1\right).2}=\frac{2003}{4020}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2003}{4020}\)
\(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{\left(x+1\right)-x}{x.\left(x+1\right)}=\frac{2003}{4020}\)
\(\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+...+\frac{x+1}{\left(x+1\right).x}-\frac{x}{\left(x+1\right).x}=\frac{2003}{4020}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{2003}{4020}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4020}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2003}{4020}=\frac{7}{4020}\)
\(\frac{7}{\left(x+1\right).7}=\frac{7}{4020}\)
\(\left(x+1\right).7=4020\)
\(\Rightarrow x=....\)
Đặt A=1/3+1/6+1/10+...+2/x*(x+1)
1/2A=1/3*2+1/6*2+1/10*2+...+2/2*x*(x+1)
1/2A=1/6+1/12+1/20+...+1/x*(x+1)
1/2A=1/2*3+1/3*4+1/4*5+...+1/x*(x+1)
1/2A=1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/(x+1)
1/2A=1/2-1/x+1
A=(1/2-1/x+1):1/2
A=1-2/x+1
Ta có A=1999/2001
Hay 1-2/x+1=1999/2001
2/x+1=1-1999/2001
2/x+1=2/2001
=>x+1=2001
=>x=2000
Cho A = 1/3+1/6+1/10+...+2/x(x+1)
1/2A= 1/3.2+1/6.2+1/10.2+...+2/x(x+1)2
1/2A= 1/6+1/12+1/20+...+1/x(x+1)
1/2A= 1/2.3+1/3.4+1/4.5+...+1/x(x+1)
1/2A= 1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1
1/2A= 1/2-1/x+1
A = (1/2-1/x+1)/1/2
A = 1-2/x+1
Mà A=1999/2001
=> 1-2/x+1= 1999/2001
2/x+1= 1-1999/2001
2/x+1= 2/2001
=>x+1=2001
=>x = 2000
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)
\(\Rightarrow2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}\div2\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}\)
\(\Rightarrow\frac{1}{x+1}=\frac{2}{4018}=\frac{1}{2009}\)
\(\Rightarrow x+1=2009\)
\(\Rightarrow x=2008\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
=>\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2007}{4018}\)(nhân cả hai vế với \(\frac{1}{2}\))
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)= \(\frac{2007}{4018}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2007}{4018}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2}-\frac{2007}{4018}\)
\(\frac{1}{x+1}=\frac{1}{2009}\)
x+1=2009
x=2009-1=2008
Vậy x bằng 2008
Ta có: 1/3+1/6+1/10+...+2/x*(x+1)
=2/6+2/12+2/20+...+2/x*(x+1)
=2/2*3+2/3*4+2/4*5+...+2/x*(x+1)
=2*(1/2*3+1/3*4+1/4*5+...+1/x*(x+1))
=2*(1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)
=2*(1/2-1/x+1)=2000/2002
=>1/2-1/x+1=2000/2002:2
=>1/2-1/x+1=500/1001
=>1/x+1=1/2-500/1001
=>1/x+1=1/2002
=>x+1=2002
=>x=2002-1
=>x=2001 thuộc N
Vậy x=2001
*Mình ko biết ấn dấu phân số với dấu nhân ở đâu, bạn thông cảm nhé!
1/3 + 1/6 + 1/10 + .......+2/x(x + 1) = 2015/2017
=> 2/2.3 +2/3.4 + 2/4.5 +........+ 2/x(x+1) =2015/2017
=> 2. [1/2.3 + 1/3.4 +1/4.5+....+1/x(x+1) ] = 2015/2017
=> 2. [ 1/2+ (-1/3 + 1/3) + (-1 /4 +1/4)+ -1/5 +.......+ 1/x + -1/x+1]
=> (1/2 + -1/x+1) .2 =2015/2017
=> 1/2 + -1/x+1 = 2015/2017 :2 = 2015/2017 . 1/2 =2015/4034.
=> -1/x+1 = 2015/4034 -1/2 = 2015/4034 -2017/4034 = -1/2017
=> -1/x+1 = -1/2017
=>x+1=2017
=> x= 2016
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2005}\)
\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)
\(2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)
\(2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)
\(=>2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4008}{2005}\)
\(2.\left(1-\frac{1}{x+1}\right)=\frac{4008}{2005}\)
=> \(1-\frac{1}{x+1}=\frac{4008}{2005}:2=\frac{2004}{2005}\)
\(\frac{1}{x+1}=1-\frac{2004}{2005}=\frac{1}{2005}\)
=>x+1=2005
=>x=2004
1/3 + 1/6 + 1/10 +...+ 2/x(x+1) = 2014/2015