Bài 3: Cho tam giác OCD vuông tại O có OC=6cm;OD=8cm Trên cạnh OC lấy điểm B sao cho OB = 4 cm trên cạnh OD lấy điểm A sao cho OA=3cm. a) Chứng minh rằng: tam giác OAB đồng dạng với tam giác OCD b) Qua C kẻ CE/AB (E thuộc OD). Tính CE ? c) Chứng minh rằng: OC^2= OD.OE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py-ta-go, ta được:
CD2=OC2+OD2=62+82=100, suy ra CD=10 (cm).
theo định lí pi-ta-go ta có:
CD2=OC2+OD2
CD2=62+82
CD2=100
=>CD=\(\sqrt{100}=10\)
Bài 1:
\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)
DH=15(cm)
\(OH=3\sqrt{15}\left(cm\right)\)
\(OC=\sqrt{OH^2+CH^2}=\sqrt{81+135}=6\sqrt{6}\left(cm\right)\)
\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)
Bài 1:
\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)
\(DH=15\left(cm\right)\)
\(OC=\sqrt{9\cdot24}=6\sqrt{6}\left(cm\right)\)
\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)
\(OH=3\sqrt{15}\left(cm\right)\)
Ta có: \(\widehat{CMK}+\widehat{ECD}=90^0\)(ΔCKM vuông tại K)
\(\widehat{CEO}+\widehat{OCE}=90^0\)(ΔCOE vuông tại O)
mà \(\widehat{ECD}=\widehat{OCE}\)(CE là phân giác của góc OCD)
nên \(\widehat{CMK}=\widehat{CEO}\)
mà \(\widehat{CMK}=\widehat{OME}\)(hai góc đối đỉnh)
nên \(\widehat{OME}=\widehat{OEM}\)
=>ΔOEM cân tại O
a: Xét ΔOAB vuông tại O và ΔOCD vuông tại O có
góc OAB=góc OCD
=>ΔOAB đồng dạng với ΔOCD
b: Xét ΔABD vuông tại A và ΔDAC vuông tại D có
góc ABD=góc DAC
=>ΔABD đồng dạng với ΔDAC
a) Xét tam giác AOD và tam giác BAD có:
{Dˆ:chungAOˆD=DAˆB=90{D^:chungAO^D=DA^B=90⇒ΔAOD≀ΔBAD(g.g)⇒ΔAOD≀ΔBAD(g.g)
b) Ta có: DAˆO=ABˆD=ABˆO(ΔAOD≀ΔBAD)DA^O=AB^D=AB^O(ΔAOD≀ΔBAD)
Và AOˆD=AOˆB=90AO^D=AO^B=90 (2 đường chéo vuông góc tại O)
Do đó ΔAOD≀ΔBOA(g.g)ΔAOD≀ΔBOA(g.g)
⇒ADAB=ODAO⇒ADAB=ODAO (1)
Lại có: {DAˆO:chungAOˆD=ADˆC=90{DA^O:chungAO^D=AD^C=90⇒ΔADC≀ΔAOD(g.g)⇒ΔADC≀ΔAOD(g.g)
⇒CDOD=ADAO⇔CDAD=ODAO⇒CDOD=ADAO⇔CDAD=ODAO (2)
Từ (1);(2)⇒ADAB=CDAD⇒AD2=AB⋅CD⇒ADAB=CDAD⇒AD2=AB⋅CD
c) Ta có: AB song song với DC (ABCD là hình thang)
⇒ABˆO=ODˆC(slt)⇒AB^O=OD^C(slt)
Và AOˆB=DOˆC(đ2)AO^B=DO^C(đ2)
Do đó ΔOCD≀ΔOAB(g.g)ΔOCD≀ΔOAB(g.g)
⇒k=OCOA=CDAB=94⇒k=OCOA=CDAB=94
⇒SΔOCDSΔOAB=k2=942=8116⇒SΔOCDSΔOAB=k2=942=8116
Vậy........................
Δ : tam giác. Chúc bạn học tốt nhé!
Chú ý :Δ là tam giác
a) Xét ΔAOD và ΔBAD có:
{Dˆ:chungAOˆD=DAˆB=90⇒ΔAOD≀ΔBAD(g.g)
b) Ta có: DAˆO=ABˆD=ABˆO(ΔAOD≀ΔBAD)
Và AOˆD=AOˆB=90 (2 đường chéo vuông góc tại O)
Do đó ΔAOD≀ΔBOA(g.g)
⇒ADAB=ODAO (1)
Lại có: {DAˆO:chungAOˆD=ADˆC=90⇒ΔADC≀ΔAOD(g.g)
⇒CDOD=ADAO⇔CDAD=ODAO (2)
Từ (1);(2)⇒ADAB=CDAD⇒AD2=AB⋅CD
c) Ta có: AB song song với DC (ABCD là hình thang)
⇒ABˆO=ODˆC(slt)
Và AOˆB=DOˆC(đ2)
Do đó ΔOCD≀ΔOAB(g.g)
⇒k=OCOA=CDAB=94
⇒SΔOCDSΔOAB=k2=942=8116
Vậy........................
Chúc bạn học tốt nhé !
cho tam giác OCD cân tại O. Trên OC lấy A,OD lấy B sao cho OA=OB.DA cắt CB tại E.
CMR: EO+EC+ED<2.OC
. theo tính chất hai tiếp tuyến cắt nhau ta có CM = AC DM = DB mà CD = CM+DM nên CD = AC + DB
b. theo tính chất hai tiếp tuyến cắt nhau ta có OC và OD là các tia phân giác của hai góc kề bù ^AOM và ^MOB nên ^COD= 90 độ tam giác COD có ^COD =90 độ nên là tam giác vuông tam giác COD là tam giác vuông nên OM^2 = CM.MD = R^2 mà CM = AC , DM = DB nên AC.BD = R^2 nên AC.BD = CM.DM
Giải thích các bước giải:
a.Vì CM, CA là tiếp tuyến của O
→→ OC là phân giác ˆMOAMOA^
Tương tự ta chứng minh được OD là phân giác ˆMOBMOB^
Do ˆMOA+ˆMOB=ˆAOB=180oMOA^+MOB^=AOB^=180o
→12.ˆMOA+12.ˆMOB=90o→12.MOA^+12.MOB^=90o
→ˆMOC+ˆMOD=90o→MOC^+MOD^=90o
→ˆCOD=90o→COD^=90o
→ΔCOD→ΔCOD vuông tại O
b.Vì CD là tiếp tuyến của (O)
→OM⊥CD→OM⊥CD Mà ΔOCD,OC⊥ODΔOCD,OC⊥OD
→CM.DM=OM2→CM.DM=OM2
Mà CM=CA,DM=DACM=CA,DM=DA (do CA, CM là tiếp tuyến của (O); DM, DA là tiếp tuyến của (O))
→AC.BD=R2(OM=R)→AC.BD=R2(OM=R)
→đpcm
Tham thảo