Cho a, b thuộc Z biết a chia cho 3 dư 1, b chia cho 3 dư 2.
Chứng minh rằng:
a/ ab-2 chia hết cho 3
b/ab chia cho 3 dư 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
Ta có a = 3. q + 1 (q là số tự nhiên)
b = 3 . p + 2 (p là số tự nhiên)
a.b = (3q + 1)(3p + 2)
= 9qp + 6q + 3p + 2
Tổng trên có 9qp, 6q, 3p đều chia hết cho 3 do đó Tổng chia cho 3 dư 2, nghĩa là ab chia cho 3 dư 2.
Câu hỏi của Dung Tr - Toán lớp 6 - Học toán với OnlineMath
bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)
Ta có: a chia cho 3 dư 1 ⇒ a = 3q + 1 (q ∈N)
b chia cho 3 dư 2 ⇒ b = 3k + 2 (k ∈N)
a.b = (3q +1)(3k + 2) = 9qk + 6q + 3k +2
Vì 9 ⋮ 3 nên 9qk ⋮ 3
Vì 6 ⋮ 3 nên 6q ⋮ 3
Vì 3⋮ 3 nên 3k ⋮ 3
Vậy a.b = 9qk + 6q + 3k + 2 = 3(3qk + 2q + k) +2 chia cho 3 dư 2.(đpcm)
Bài 1:
Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)
b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)
\(\Rightarrow ab\equiv2\left(mod3\right)\)
Vậy ab chia cho 3 dư 2
Cách 2: ( hướng dẫn)
a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )
Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh
Bài 2:
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)
Theo bài ra ta có :
a = 3q + 1 ( qen )
b = 3k + 2 ( ken )
ab = ( 3q + 1 ) ( 3k + 2 ) = 9qk + 6q + 3k + 2 = 3 ( 3qk + 2q + k ) + 2
Ta thấy : 3 ( 3qk + 2q + k ) Chai hết cho 3
2 không chia hết cho 3 và 2 < 3
Từ 2 điều trên => ab chia hết cho 3 dư 2 ( dpcm )
Theo bài ra ta có :
a = 3q + 1 ( qen )
b = 3k + 2 ( ken )
ab = ( 3q + 1 ) ( 3k + 2 ) = 9qk + 6q + 3k + 2 = 3 ( 3qk + 2q + k ) + 2
Ta thấy : 3 ( 3qk + 2q + k ) Chai hết cho 3
2 không chia hết cho 3 và 2 < 3
Từ 2 điều trên => ab chia hết cho 3 dư 2 ( dpcm )