cho góc nhọn xOy.Gọi C là một điểm thuộc tia phân giác của góc xOy. Kẻ CA vuông góc với Õ. Kẻ CB vuông góc với Oy. a) chứng minh tam giác OAC bằng tam giác OBC b) gọi D là giao điểm của BC và Ox.Gọi E là giao điểm của AC và Oy chứng minh tam giác CDE cân c) gọi F là trung điểm của DE.Chứng minh O,C,F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
\(\widehat{AOC}=\widehat{BOC}\)
Do đó;ΔOAC=ΔOBC
Suy ra: OA=OB và CA=CB
hay ΔOAB cân tại O
b: Ta có: ΔOAB cân tại O
mà OC là đường phân giác
nên CO là đường cao
c: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
\(\widehat{ACD}=\widehat{BCE}\)
Do đó: ΔCAD=ΔCBE
Suy ra: CD=CE
d: OA=12cm
OC=13cm
=>AC=5cm
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
\(\widehat{AOC}=\widehat{BOC}\)
Do đó: ΔOAC=ΔOBC
Suy ra: OA=OB và CA=CB
=>ΔOAB cân tại O
b: Ta có: OA=OB
CA=CB
DO đó: OC là đường trung trực của AB
hay OC\(\perp\)AB
c: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
\(\widehat{ACD}=\widehat{BCE}\)
Do đó: ΔCAD=ΔCBE
SUy ra: CD=CE
a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có
OI chung
góc AOI=góc BOI
=>ΔOAI=ΔOBI
=>OA=OB và IA=IB
b: OA=căn 10^2-6^2=8cm
c: Xét ΔIBM vuông tại B và ΔIAK vuông tại A có
IB=IA
góc AIK=góc BIM
=>ΔIBM=ΔIAK
d: OA+AK=OK
OB+BM=OM
mà OA=OB và AK=BM
nên OK=OM
mà IM=IK
nên OI là trung trực của MK
=>O,I,C thẳng hàng
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
góc AOC=góc BOC
=>ΔOAC=ΔOBC
=>OA=OB và CA=CB
b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
góc ACD=góc BCE
=>ΔCAD=ΔCBE
=>CD=CE và AD=BE
c: Xét ΔOED có OA/AD=OB/BE
nên AB//ED
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
\(\widehat{AOC}=\widehat{BOC}\)
Do đó: ΔOAC=ΔOBC
b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
\(\widehat{ACD}=\widehat{BCE}\)
Do đó; ΔCAD=ΔCBE
Suy ra: CD=CE
hay ΔCDE cân tại C
c: ta có: OD=OE
nên O nằm trên đường trung trực của DE(1)
Ta có: CD=CE
nên C nằm trên đường trung trực của DE(2)
Ta có; FD=FE
nên F nằm trên đường trung trực của DE(3)
Từ (1), (2) và (3) suy ra O,C,F thẳng hàng