Tính
A = \(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}....\frac{1000^2}{1000.1001}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1^2.2^2.3^2...1000^2}{1.2^2.3^2.4^2...1000^2.1001}=\frac{1}{1001}\)
\(\frac{1.1}{1.2}.\frac{2.2}{2.3}\frac{3.3}{3.4}...\frac{100.100}{100.101}\)
\(=\frac{\left(1.2.3...100\right).\left(1.2.3...100\right)}{\left(1.2.3...100\right).\left(2.3...101\right)}\)
\(=\frac{1}{1.101}\)
\(=\frac{1}{101}\)
k cho mk nha
Đặt biểu thức trên là A
Ta có: A =(1^2 . 2^2 . 3^2 . 4^2)/(1.2.2.3.3.4.4.5)
= [(1.2.3.4).(1.2.3.4)] / [(1.2.3.4).(2.3.4.5)]
= 1/5
Vậy A = 1/5
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
=\(\frac{1.1.2.2.3.3.4.4}{1.2.2.3.3.4.4.5}\)
=\(\frac{1}{5}\)
hình như là 32 chứ k f 33
\(B=\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\)
\(B=\frac{\left(1\cdot1\right)\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)}{\left(1\cdot2\right)\left(2\cdot3\right)\left(3\cdot4\right)\left(4\cdot5\right)}\)
\(B=\frac{\left(1\cdot2\cdot3\cdot4\right)\left(1\cdot2\cdot3\cdot4\right)}{\left(1\cdot2\cdot3\cdot4\right)\left(2\cdot3\cdot4\cdot5\right)}\)
\(=\frac{1}{5}\)
\(B=\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\)
\(B=\frac{1^2\cdot2^2\cdot3^2\cdot4^2}{1\cdot2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot5}\)
\(B=\frac{1^2\cdot2^2\cdot3^2\cdot4^2}{1^2\cdot2^2\cdot3^2\cdot4^2\cdot5}=\frac{1}{5}\)
Bài 15 :
a) Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(A=1-\frac{1}{2020}=\frac{2019}{2020}< \frac{2020}{2020}=1\)
b) Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1000}}\)
\(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1001}}\)
\(2A-A=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1001}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}\right)\)
\(A=\frac{1}{2^{1001}}-\frac{1}{2}\)
Tới đây là so sánh đi nhé
Cái này mình làm hôm qua rồi mà '-'
a) Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(A=\frac{1}{1}-\frac{1}{2020}=\frac{2019}{2020}\)
\(\Rightarrow A< 1\)
b) \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1000}}\)
\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1000}}\right)\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{999}}\)
\(2A-A=A\)
\(=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{999}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{999}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{1000}}\)
\(=1-\frac{1}{2^{1000}}\)
\(\Rightarrow A=1-\frac{1}{2^{1000}}< 1\left(đpcm\right)\)
sorry mình nhầm
ta có:
M=\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\).\(\frac{3^2}{3.4}\).\(\frac{4^2}{4.5}\)
=\(\frac{1.1.2.2.3.3.4.4}{1.2.2.3.3.4.4.5}\)
=\(\frac{1}{5}\)
vậy M=\(\frac{1}{5}\)
dấu bằng của mk bt liệt nên bạn thông cảm
A bằng (1.2.3.4).(1.2.3.4)/(1.2.3.4).(2.3.4.5) bằng 5
rút gọn cho nhau bạn nhé
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{100^2}{1000.1001}\)
\(A=\frac{1.1.2.2.3.3.....1000.1000}{1.2.2.3.3.4.....1000.1001}\)
\(A=\frac{\left(1.2.3.....1000\right).\left(1.2.3.....1000\right)}{\left(1.2.3.4....1000\right).\left(2.3.4.....1001\right)}\)
\(A=\frac{1}{1001}\)
Ta có A=\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{1000^2}{1000.1001}\)
=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{1000}{1001}\)
=\(\frac{1.2.3.....1000}{2.3.4.....1001}\)
=\(\frac{1}{1001}\)