Số tự nhiên n nào thỏa mãn điều kiện sau ko?
\(\frac{7}{2}:\frac{3}{12}\)< n < \(\frac{5}{3}:\frac{1}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
7/2:3/12
=7/2x4
=14
Vậy có n=14 là thỏa mãn điều kiện
Chúc em học tốt^^
Anh nhanh nhất nè^^
(n + 3) + (n + 7) + (n + 11) + ... + (n + 79) = 860
<=> n + 3 + n + 7 + n + 11 + ... + n + 79 = 860
<=> ( n + n + n ... + n ) + ( 3 + 7 + 11 + ... + 79 ) = 860
Tổng 1 Tổng 2
Số các số của 2 tổng ( 79 - 3 ) : 4 + 1 = 20 ( chữ số )
<=> 20n + (79 + 3).20 : 2 = 860
<=> 20n + 820 = 860
<=> 20n = 860 - 820
<=> 20n = 40
=> n = 2
Vậy n = 2
dựa theo yêu cầu của bài toán ta thấy
n+3 sẽ bé hơn n+7 n+4 đơn vị
mỗi số đều lần lượt như thế
nên ta có
n+3+n+7+n+11+n+15+n+19+n+23+n+27+n+31+n+35.......
tất cả số như thế cậu công lần lượt tổ số 35 lên 4 đơn vị nhé
nên ta có thỏa mãn n sẽ bằng số
(860-4):4+1:4=53,5
đáp số 53,5
k nha cảm ơn
Giải:
Ta có: \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
\(\Rightarrow\frac{4}{14}< \frac{4}{4n}< \frac{4}{7}\)
\(\Rightarrow14>4n>7\)
Mà \(n\in N\Rightarrow4n⋮4\)
Các số chia hết cho 4 từ 7 đến 14 là 8 và 12
+) \(4n=8\Rightarrow n=2\)
+) \(4n=12\Rightarrow n=3\)
Vậy n = 2 hoặc n = 3
Vì \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
\(=>\frac{8}{28}< \frac{8}{8n}< \frac{8}{14}\) ( quy đồng tử )
\(=>8n\in\left\{27;26;25;....;13\right\}\)
Mà trong đó chỉ có 16; 24 là bội của 8 vì \(n\in N\)
Nếu 8n = 16 thì n = 2
Nếu 8n = 24 thì n = 3
Vậy \(n\in\left\{2;3\right\}\)
\(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\Leftrightarrow\frac{1}{3,5}< \frac{1}{n}< \frac{1}{1,75}\Rightarrow3,5>n>1,75\Rightarrow n=2;3\).Vậy có 2 giá trị n
Bạn thi violympic hả ?
\(a,A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-..-\frac{1}{3.2}-\frac{1}{2.1}\)
\(A=\frac{1}{100}-\left(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\right)\)
\(A=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-1+\frac{1}{100}\)
\(A=\frac{2}{100}-1\)
\(A=\frac{1}{50}-1\)
\(A=\frac{-49}{50}\)
b,\(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n=2^{n+34}\) (1)
Đặt \(B=2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n\)
\(\Rightarrow2B=2.\left(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n\right)\)
\(=2.2^3+3.2^4+4.2^5+...+\left(n-1\right).2^n+n.2^{n+1}\)
\(2B-B=\left(2.2^3+3.2^4+4.2^5+..+\left(n-1\right).2^n+n.2^{n+1}\right)\)
\(=(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n)\)
\(B=-2^3-2^4-2^5-...-2^{n+1}-2.2^2\)
\(=-\left(2^3+2^4+2^5+...+2^n\right)+n.2^{n+1}-2^3\)
Đặt \(C=2^3+2^4+2^5+2^n\)
\(\Rightarrow2C=2.(2^3+2^4+2^5+...+2^n)\)
\(C=2^4+2^5+2^6+...+2^{n+1}\)
\(2C-C=\left(2^4+2^5+2^6+...+2^{n+1}\right)-\left(2^3+2^4+2^5+...+2^n\right)\)
\(C=2^{n+1}-2^3\)
Khi đó : \(B=-(2^{n+1}-2^3)+n.2^{n+1}-2^3\)
\(=-2^{n+1}+2^3+n.2^{n+1}-2^3\)
=\(=-2^{n+1}+n.2^{n+1}=\left(n-1\right).2^{n-1}\)
Vậy từ (1) ta có:\(\left(n-1\right),2^{n+1}=2^{n+34}\)
\(2^{n+34}-\left(n-1\right).2^{n+1}=0\)
\(2^{n+1}.[2^{33}-\left(n-1\right)]=0\)
Do đó \(2^{33}-n+1=0\)( Vì \(2^{n+1}\ne0\)với mọi \(n\))
\(n=2^{33}+1\)
Vậy \(n=2^{33}+1\)
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{24}\Leftrightarrow\frac{x+y}{x.y}=\frac{1}{24}\Leftrightarrow24\left(x+y\right)=xy\)
\(\Leftrightarrow24x+24y=10x+y\Leftrightarrow14x+23y=0\)
Mà x,y là các số tự nhiên nên x,y>0
Do đó 14x + 23y >0 trái với sự biến đổi được
Nên không có cặp số x,y thỏa mãn điều kiện đề bài
\(\frac{7}{2}:\frac{3}{12}< n< \frac{5}{3}:\frac{1}{9}\)
\(\frac{7}{2}x4< n< \frac{5}{3}x9\)
\(14< n< 15\)
=> không có số tự nhiên n nào thỏa mãn đề bài
Ủng hộ mk nha ^_^
đề\(\Rightarrow\frac{42}{3}< n< \frac{15}{1}\Rightarrow14< n< 15\)
=>n không tồn tại