K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

45x-38x=1505

=>7x=1505

=>x=215

28 tháng 11 2021

X*(45-38)=1505

X*7=1505

X=1505:7

X=215

Bài 2: 

Lũy thừa với số mũ chẵn của một số hữu tỉ âm là số dương

Lũy thừa với số mũ lẻ của một số hữu tỉ âm là số âm

Bài 8:

a: \(2^{27}=8^9\)

\(3^{18}=9^9\)

 

Bài 13:

a: \(x^3=343\)

nên x=7

b: \(\left(2x-3\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

a: \(A=\dfrac{4^2\cdot4^3}{2^{10}}=\dfrac{4^5}{2^{10}}=1\)

b: \(C=\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{100^4}{100^5}=\dfrac{1}{100}\)

Bài 9:
a: \(10^8\cdot2^8=20^8\)

b: \(10^8:2^8=5^8\)

c: \(25^4\cdot2^8=100^4\)

d: \(27^2:25^3=\left(\dfrac{9}{25}\right)^3\)

Bài 4: 

a: \(x:\left(-\dfrac{1}{2}\right)^3=-\dfrac{1}{2}\)

\(\Leftrightarrow x=\dfrac{-1}{2}\cdot\dfrac{-1}{8}\)

hay \(x=\dfrac{1}{16}\)

b: \(\left(\dfrac{3}{4}\right)^3\cdot x=\left(\dfrac{3}{4}\right)^7\)

\(\Leftrightarrow x=\left(\dfrac{3}{4}\right)^7:\left(\dfrac{3}{4}\right)^3=\left(\dfrac{3}{4}\right)^4=\dfrac{81}{256}\)

22 tháng 11 2021

Mọi người làm giúp mình với nha

23 tháng 11 2021

34 : B

35 : D

36 : A

37 : A

38: C

39: B

 

12 tháng 4 2021

4: Đặt \(x=\dfrac{a+b}{a-b};y=\dfrac{b+c}{b-c};z=\dfrac{c+a}{c-a}\).

Ta có \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\dfrac{2a.2b.2c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

\(\Rightarrow xy+yz+zx=-1\).

Bất đẳng thức đã cho tương đương:

\(x^2+y^2+z^2\ge2\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-2\ge0\Leftrightarrow\left(x+y+z\right)^2\ge0\) (luôn đúng).

Vậy ta có đpcm

12 tháng 4 2021

mình xí câu 45,47,51 :>

45. a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{4}{2b}\ge\dfrac{\left(1+2\right)^2}{a+2b}=\dfrac{9}{a+2b}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b

b) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b}=\dfrac{9}{a+2b}\)(1)

\(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{b+c+c}=\dfrac{9}{b+2c}\)(2)

\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{\left(1+1+1\right)^2}{c+a+a}=\dfrac{9}{c+2a}\)(3)

Cộng (1),(2),(3) theo vế ta có đpcm

Đẳng thức xảy ra <=> a=b=c