Đúng rồi đó, vừa nãy cô quên không kiểm tra điều kiện, cô chữa lại nhé :)
Ta phân tích A thành nhân tử \(A=\left(2n^2+2n+1\right)\left(n^2+2n+2\right)\)
Để A là số nguyên tố thì ta có \(\hept{\begin{cases}2n^2+2n+1=1\\n^2+2n+2>1\end{cases}}\) hoặc \(\hept{\begin{cases}n^2+2n+2=1\\2n^2+2n+1>1\end{cases}}\)
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Cô ơi, em thấy trường hợp n=-1 đâu đúng đâu
Đúng rồi đó, vừa nãy cô quên không kiểm tra điều kiện, cô chữa lại nhé :)
Ta phân tích A thành nhân tử \(A=\left(2n^2+2n+1\right)\left(n^2+2n+2\right)\)
Để A là số nguyên tố thì ta có \(\hept{\begin{cases}2n^2+2n+1=1\\n^2+2n+2>1\end{cases}}\) hoặc \(\hept{\begin{cases}n^2+2n+2=1\\2n^2+2n+1>1\end{cases}}\)
Từ đó suy ra n = 0. Khi đó A = 2.