K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

a) gọi D là UCLN(3n-2;4n-3)

\(\Rightarrow\)\(\hept{\begin{cases}3n-2\\4n-3\end{cases}}\)chia hết cho  D \(\Rightarrow\)\(\hept{\begin{cases}4\left(3n-2\right)\\3\left(4n-3\right)\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}12n-8\\12n-9\end{cases}}\)chia hết cho D

\(\Rightarrow\)[(12n-9)-(12n-8)] chia hết cho D

\(\Rightarrow\)(12n-9-12n+8) chia hết cho D

\(\Rightarrow\)-1 chia hết cho D => D \(\in\) U(1) =>D \(\in\){1;-1}

hay UCLN(3n-2;4n-3) \(\in\){1;-1}

chứng minh \(\frac{3n-2}{4n-3}\)là phân số tối giản

b) +) để A là phân số thì n-3\(\ne\)0

                             =>n\(\ne\)3

+) ta có  \(\frac{n+1}{n-3}\)\(\frac{n-3+4}{n-3}\)= 1 + \(\frac{4}{n-3}\)

để A là số nguyên thì \(\frac{4}{n-3}\) cũng phải là số nguyên 

=> 4 chia hết n-3

=> n-3 \(\in\)U(4)

mà U(4) = {-1;-2;-4;1;2;4}                             

ta có bảng

n-3-1-2-4124
n21-1457

vậy n \(\in\){2;1;-1;4;5;7} thì A là số nguyên
 

4 tháng 2 2022

hahaa

11 tháng 5 2021

n bằng 0

17 tháng 7 2016

Ta có:

1/n + 3 = 1 / 1 + (n + 2) 

2/n + 4 = 2 / 2 + (n + 2)

3/n + 5 = 3 / 3 + (n + 2)

....

2001/n + 2003 = 2001 / 2001 + (n + 2)

2002/n + 2004 = 2002 / 2002 + (n + 2)

Ta thấy các phân số trên đều có dạng a/a + (n + 2)

Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau

=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau

Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003

=> n = 2003 - 2 = 2001

Vậy n = 2001

nhớ k nha

17 tháng 7 2016

Ta có:

1/n + 3 = 1 / 1 + (n + 2) 

2/n + 4 = 2 / 2 + (n + 2)

3/n + 5 = 3 / 3 + (n + 2)

....

2001/n + 2003 = 2001 / 2001 + (n + 2)

2002/n + 2004 = 2002 / 2002 + (n + 2)

Ta thấy các phân số trên đều có dạng a/a + (n + 2)

Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau

=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau

Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003

=> n = 2003 - 2 = 2001

Vậy n = 2001