K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2018

TA CÓ:
\(Q=\frac{x\left(\sqrt{x+zy}-x\right)}{x+yz-x^2}+\frac{y\left(\sqrt{y+zx}-y\right)}{y+zx-y^2}+\frac{z\left(\sqrt{xy+z}-z\right)}{z+xy-z^2}\)

\(=\frac{x\left(\sqrt{x\left(x+y+z\right)+yz}-x\right)}{x\left(x+y+z\right)+yz-x^2}+\frac{y\left(\sqrt{y\left(x+y+z\right)+zx}-y\right)}{y\left(x+y+z\right)-y^2+zx}+\frac{z\left(\sqrt{xy+z\left(x+y+z\right)}-z\right)}{z\left(x+y+z\right)+xy-z^2}\)

\(=\frac{x\left(\sqrt{\left(x+y\right)\left(z+x\right)}-x\right)}{xy+yz+zx}+\frac{y\left(\sqrt{\left(x+y\right)\left(y+z\right)}-y\right)}{xy+yz+zx}+\frac{z\left(\sqrt{\left(y+z\right)\left(z+x\right)}-z\right)}{xy+yz+za}\)

ÁP DỤNG BĐT CÔ-SI TA ĐƯỢC:

\(Q\le\frac{x\left(\frac{x+y+z+x}{2}-x\right)}{xy+zx+yz}+\frac{y\left(\frac{x+y+z+y}{2}-y\right)}{xy+yz+zx}+\frac{z\left(\frac{x+y+z+z}{2}-z\right)}{xy+yz+zx}\)

\(=\frac{xy+zx}{2\left(xy+yz+zx\right)}+\frac{xy+yz}{2\left(xy+yz+zx\right)}+\frac{yz+zx}{2\left(xy+yz+zx\right)}=1\)

DẤU BẰNG  XẢY RA \(\Leftrightarrow x=y=z=\frac{1}{3}\)

27 tháng 4 2021

Ta có: \(xyz=1\)=>\(xy=\frac{1}{z}\)
Theo BĐT cosy, ta có: \(x+y+1\ge3\sqrt[3]{xy}=3\sqrt[3]{\frac{1}{z}}=\frac{3}{3\sqrt[3]{z}}\)
tương tự:\(y+z+1\ge3\sqrt[3]{\frac{1}{x}}=\frac{3}{\sqrt[3]{x}}\)
               \(z+x+1\ge3\sqrt[3]{\frac{1}{y}}=\frac{3}{\sqrt[3]{y}}\)
              => \(Q\le\frac{1}{\frac{3}{\sqrt[3]{z}}}+\frac{1}{\frac{3}{\sqrt[3]{x}}}+\frac{1}{\frac{3}{\sqrt[3]{y}}}=\frac{\sqrt[3]{z}}{3}+\frac{\sqrt[3]{x}}{3}+\frac{\sqrt[3]{y}}{3}=\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\)
Áp dụng BĐT trên lần nữa ta được \(Q\le\frac{3\sqrt[3]{\sqrt[3]{xyz}}}{3}=\frac{3}{3}=1\)
Vậy DTLN của Q=1
dấu "=" xảy ra khi x=y=z=1

10 tháng 7 2020

dcv_new 

\(\Sigma\frac{a^2}{pab+qca}\ge\frac{\left(a+b+c\right)^2}{\left(p+q\right)\left(ab+bc+ca\right)}\ge\frac{3}{p+q}\)

23 tháng 7 2020

2, ta có \(\sqrt{a}=\sqrt{\frac{a}{x}}\cdot\sqrt{x}\)

vậy ta được \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(\sqrt{\frac{a}{x}}\cdot\sqrt{x}+\sqrt{\frac{b}{y}}\cdot\sqrt{y}+\sqrt{\frac{c}{z}}\cdot\sqrt{z}\right)^2\le\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(x+y+z\right)=S\)

dấu đẳng thức xảy ra khi \(\sqrt{x}:\sqrt{\frac{a}{x}}=\sqrt{y}:\sqrt{\frac{b}{y}}=\sqrt{z}:\sqrt{\frac{c}{z}}\Leftrightarrow\hept{\begin{cases}\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1\\\frac{x}{\sqrt{a}}=\frac{y}{\sqrt{b}}=\frac{z}{\sqrt{c}}\end{cases}}\)

\(\Rightarrow x=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};y=\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};z=\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

vậy min (x+y+z)=\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\)

27 tháng 12 2016

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\\ \)

\(\frac{x}{x+1}=\frac{x+1-1}{x+1}=1-\frac{1}{x+1}\) tương tự với y,z

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

=> ta đi tìm GTNN của (..)\(A=\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

đặt x+1=a;y+1=b;z+1=c nội suy cho đỡ đau đầu a+b+c=4

\(B=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) 

\(a+b+c\ge3\sqrt[3]{abc}\)(*)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}\)(*)

(*).(**)\(\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{\left(a+b+c\right)}\)

\(\Rightarrow B\ge\frac{9}{4}\Rightarrow A\ge\frac{9}{4}\Rightarrow P\le3-\frac{9}{4}=\frac{3}{4}\)

DS: \(P_{max}=\frac{3}{4}\) đẳng thức khi a=b=c=> x=y=z=1/3

21 tháng 8 2017

hay was

Tham khảo link này nha

https://olm.vn/hoi-dap/detail/243232541423.htm